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ABSTRACT 

Environmental monitoring programs are important for industries that work with gasses that may be dangerous or may represent a  risk for 

workers or the environment in general. These industries are obligated to present a risk assessment to avoid any potential danger. To do this, 

there are computational programs that can model any leak and calculate the damage that may cause. A problem that can be presented for 

this program is that they assume that the gas is always moving but there are some occasions that the gas may be not moving because there is 

not air flux due to a closed space or because the gas may be too heavy. So, what happened when the gas remains static? Here w e present 

some equations that may describe this situation to teach them to a new generation of environment and risk assessment professionals. 

Keywords: Air quality, air pollutants, environmental monitoring, risk assessment 

Corresponding author: García-Bedoya D 

e-mail   dgbedoya @ gmail.com

Received: 18 February 2020 

Accepted: 07 June 2020 

1. INTRODUCTION

All over the world, environmental pollution is one of the most 

dangerous issues (Amasha and Aly, 2019; Elnour et al., 2018; 

Singh and Kapoor, 2019). In a monitoring program, a 

mathematical simulation of gas emission is quite essential 

when the gas modeled is toxic. Toxicity due to gas must not be 

common and when happened is surely an accident, where a 

quick diagnostic must be necessary for avoiding fatal losses 

(Rigas and Sklavounos 2007). When in an emission monitoring 

program, the goal is to keep these at minimum levels but due 

to a human error or just an accident (old machinery, rusted 

pipes, extreme pressure, toxic substances spills, etc.), the 

pollutant concentration in air can be out of boundaries. These 

accident cases could occur in the mines, chemicals, or other 

transformation industries (Maria and Markiewicz, 2012). 

Besides, the monitoring programs in some legislations (as the 

Mexican), for the environmental impact studies, a risk analysis 

is required and in the popular methods suggested like 

ALOHA® (Fedra, 1998), the simulation is Gaussian and the 

number of substances modeled is limited. Because of that, this 

paper proposal is to study instant emissions of extreme 

concentration pollutants. This is necessary to define the impact 

area and the contamination levels that may occur in an 

industry or any given área because modeling helps to build 

legislation and measurements to protect the environment. On 

the other hand, pollutant sources may be human-created or 

naturals; in this second case, it is important to generate 

evacuation plans according to the modeling to save most lives 

as possible and to avoid panic or unnecessary emigrations that 

just cost money and time in better scenarios.  

The model we worked with is based on the mass transfer and 

in this research, the mathematical expression is (Bird et al. 

2002): 

D∇2𝑐(𝑟, 𝑡) − �⃗� ∙ ∇𝑐(𝑟, 𝑡) = 𝜕𝑐(𝑟, 𝑡)𝜕𝑡
Where 𝑐(𝑟, 𝑡) is the pollutant concentration that depends on

the location and the time, 𝐷 is the diffusivity, and �⃗� is the

velocity of the wind. It must be clear that this model does not 

contemplate chemical reactions nor other kinds of interaction 

with other gasses. The pollutant dispersion in the atmosphere 

is dominated by two mechanisms (Wark, 1981), the air flux 

and turbulences; these scatter the pollutants in all directions.  

The pollutant transfer is, in general, a complex problem; it 

relays on many factors such as gas and air temperature, 

moisture, etc. There is a methodology (Pasquill method) to 

analyze the air dispersion classifying it using its thermodynamics’ conditions, including temperature. If the 
airspeed is under 2 m/s, it is considered to be low. The main 

problem with this is that at low-speed Pasquill method 

supposes that pollutants remain static and this is very 

interesting to study this case (Sharan et al. 1996; table 1).  
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Table 1. Atmosphere stability classes in accordance with 

Pasquill (Sharan, et al. 1996). 

Wind velocity 

on the height  

Daytime, incoming solar 

radiation 
Night, cloudiness 

of 10m (m/s) Strong Moderate Weak Clouded Cloudless 

< 2 A A – B B E F 

2 - 3 A – B B C E F 

3 - 5 B B – C C D E 

5 - 6 C C – D D D D 

> 6 C D D D D 

 

The main objective of this paper is to calculate the dispersion 

of pollutants using two methods via Fourier transform for 

some cases: instantaneous point source, continuous point 

source, several instantaneous points sources, a finite source of 

time, and finally, a linear source. 

 

2. THEORY 

One of the techniques to analyze the dynamic behavior of 

dynamic systems is the Fourier transform (Weber and Arfken, 

2003). The Fourier transform is a linear transformation that 

allows studying a system either in the time domain or in the 

frequency; said transformation is defined as: 

 𝑐(𝑥, 𝑡) = 1√2𝜋 ∫ 𝑐̃(𝑘, 𝑡)𝑒𝑖𝑘𝑥𝑑𝑥∞
−∞  

 

This allows studying a system that is complicated in time but 

not in frequency; a reason why transformations like Fourier's 

or Laplace's make the description easier in many cases (Weber 

and Arfken, 2003). On the other hand, one of the fundamental 

principles of nature is that the mass is conserved and writing 

this in equations gives the equation of continuity (Welty et al. 

2014):  𝜕𝜌𝑖𝜕𝑡 + ∇ ∙ (𝜌𝑖𝒗𝑖) = 0 

 

If we define  𝒋𝑖 = 𝜌𝑖(𝒗𝑖 − 𝒗) then: 

 𝑑𝜌𝛼𝑑𝑡 + 𝜌𝛼(∇ ∙ 𝒗) + ∇ ∙ 𝒋𝛼 = 0 

 

In the experiments, it is easier to talk about the concentration 

of the substance in the binding of the densities, 

 𝑐𝑖 = 𝜌𝑖𝜌  

or 𝑑𝑐𝑖𝑑𝑡 + 1𝜌 ∇ ∙ 𝒋𝑖 = 0 

 In thermodynamics, the concept of chemical potential μ is 
introduced and in the context of transport we can establish 

that a system that is not in chemical equilibrium (Levich et al. 

1978), there will be a mass flow so we will take that: 

 𝒋 = −𝛾∇𝜇 

 

Taking an isothermal process in the event that 𝜇 = 𝜇(𝑝, 𝑐𝛼), 

then  

 𝒋𝑖(𝑀) = −𝛾 (𝜕𝜇𝜕𝑐𝑖)𝑝,𝑇 ∇𝑐𝑖 − 𝛾 (𝜕𝜇𝜕𝑝)𝑐𝑖 ,𝑇 ∇𝑝𝑖 
 

It has been proposed then that diffusion is due to two causes, a 

concentration and pressure gradient, which agrees with the 

experiment. However, it is possible to induce transport via 

temperature gradient or electromagnetic fields (Welty et al. 

2014). We define the molecular diffusion coefficient and the 

pressure coefficient as: 

 𝐷𝑖 = 𝛾𝜌 ( 𝜕𝜇𝜕𝑐𝑖)𝑝,𝑇 𝑘𝑝(𝑖)𝑝 = 𝛾𝜌𝐷𝑖 ( 𝜕𝜇𝜕𝑐𝑖)𝑝,𝑇 

If 𝐷𝑖 ≫ 𝑘𝑝(𝑖)𝑝  then  𝜕𝑐𝑖𝜕𝑡 + (𝒗 ∙ ∇𝑐𝑖) − 𝐷𝑖∇2𝑐𝑖 = 0 

 

The last expression is called Fick's Second Law (Levich et al. 

1978). 

 

3. RESULTS Pollutants’ transfer in the air can be described by the next 
equation:  

 𝐷∇2𝑐(𝑟, 𝑡) − �⃗� ∙ ∇𝑐(𝑟, 𝑡) + 𝑅 = 𝜕𝑐(𝑟, 𝑡)𝜕𝑡  
(1) 

In the anterior expressions may be referred to as a source or a 

sink, are the speed of the air and is the concentration of the 

pollutant. The sources may be punctual, lineal, or by area 

whose can be simulated like a Dirac delta. In general, Dirac 

delta generalized functions are used to simulate sources due to 

incidents (Weber and Arfken, 2003). The Dirac Delta Function 

is defined as: 

 ∫ 𝛿(𝑥 − 𝑥𝑜)∞
−∞ 𝑑𝑥 = 1 𝛿(𝑥 − 𝑥𝑜)|𝑥=𝑥𝑜 = ∞ 

 

(2) 

Rewritten the equation (1) assuming no chemical reaction and 

the velocity of the air is too low, so we are going to study 

instantaneous emission in one dimension and after that in 

several dimensions with and without wind, so several cases we 

are going to study.  

 

i) Instantaneous emission with no wind 

 𝜕𝑐(𝑥, 𝑡)𝜕𝑡 = 𝐷 𝜕2𝑐(𝑥, 𝑡)𝜕𝑥2  

 

(3) 

To solve the last equation will be solved by using the Fourier 

transform:  
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𝑐(𝑥, 𝑡) = 1√2𝜋 ∫ 𝑐(̃𝑘, 𝑡)𝑒𝑖𝑘𝑥𝑑𝑥∞
−∞  

 

(4) 

 Substituting equation (3) into (4) we obtain 𝜕�̃�(𝑥, 𝑡)𝜕𝑡 = −𝑘2𝐷�̃�(𝑘, 𝑡) 

 

(5) 

where the solution is 

 �̃�(𝑘, 𝑡) = 𝐴(𝑘)𝑒−𝑘2𝐷𝑡 

 

(6) 

The source of contamination will be given as an initial 

condition of the system 

 𝐶(𝑥, 0) = 𝑓(𝑥) = 1√2𝜋 ∫ �̃�∞
−∞ (𝑘, 0)𝑒𝑖𝑘𝑥𝑑𝑘 

 

(7) 

Being the inverse Fourier transform 

 �̃�(𝑘, 0) = 1√2𝜋 ∫ 𝑓(𝑥)∞
−∞ 𝑒−𝑖𝑘𝑥 

 

(8) 

From equation (7) is obtained  

 �̃�(𝑘, 0) = 𝐴(𝑘) (9) 

Then 

 𝐴(𝑘) = 1√2𝜋 ∫ 𝑓(𝑥)∞
−∞ 𝑒−𝑖𝑘𝑥 𝑑𝑥 

 

(10) 

 

 

 

With the last result, the solution of the equation is 

 �̃�(𝑘, 𝑡) = 1√2𝜋 ∫ 𝑓(𝑥)∞
−∞ 𝑒−𝑖𝑘𝑥𝑒−𝑘𝐷𝑡𝑑𝑥 

 

(11) 

Then, equation (5) in (9) is generated 

 �̃�(𝑥, 𝑡) = 12𝜋 ∫ 𝑓(𝑥)∞
−∞ 𝑑𝑥′ ∫ 𝑒−𝑘2𝐷𝑡∞

−∞ 𝑒𝑖𝑘𝑥′𝑒𝑖𝑘𝑥 (12) 

 

Since 

 ∫ 𝑒−𝑘2𝐷𝑡+𝑖𝑘(𝑥−𝑥´)𝑑𝑘 = √𝜋∞
−∞ 𝑒−(𝑥−𝑥′)24𝐷𝑡√𝐷𝑡  

 

(13) 

The above is demonstrated later; equation (35-43) So, 

 𝐶(𝑥, 𝑡) = 1√4𝜋𝐷𝑡 ∫ 𝐶(𝑥′, 0)𝑒−(𝑥−𝑥′)24𝐷𝑡 𝑑𝑥′∞
−∞  (14) 

 

To model an instantaneous point source, for example an 

explosion, the Dirac Delta function is used: 

 𝐶(𝑥′, 0) = 𝑚𝛿(𝑥′ − 𝑥) 

 
(15) 

Finally, the dispersion of the contaminant will be given by the 

equation 

 𝐶(𝑥, 𝑡) = 1√4𝜋𝐷𝑡 𝑚𝑒−(𝑥−𝑥0′ )24𝐷𝑡  

 

(16) 

This solution has been used in the environmental area to 

analyze the behavior of pollutants at the low velocity of the air. 

Observation: the units of C are mass/length, so we should 

incorporate the transversal área, this means that  

 𝐶(𝑥, 𝑡) = 1𝐴√4𝜋𝐷𝑡 𝑚𝑒−(𝑥−𝑥0′ )24𝐷𝑡  

 

ii) Instantaneous emission with wind 

 

To consider the effects of wind speed, the differential equation 

that describes the pollutant under these conditions we have 

 𝜕𝑐(𝑥, 𝑡)𝜕𝑡 = 𝐷 𝜕2𝑐(𝑥, 𝑡)𝜕𝑥2 − 𝑢 𝜕𝑐(𝑥, 𝑡)𝜕𝑡  
(17) 

 

The easiest is to make a change of variable 

 𝜀 = 𝑥 − 𝑢𝑡 (18) 

 

Then, 

 𝜕𝑐𝜕𝑥 = 𝜕𝑐𝜕𝜀 𝜕𝜀𝜕𝑥 + 𝜕𝑐𝜕𝑡 𝜕𝑡𝜕𝑡 = 𝜕𝑐𝜕𝜀  
(19) 

 

Finally, 

 𝜕2𝑐𝜕𝑥2 = 𝜕2𝑐𝜕𝜀2 

 

(20) 

When considering the derivative with respect to time we have 

 𝜕𝑐𝜕𝑡 = 𝜕𝑐𝜕𝜀 𝜕𝜀𝜕𝑡 + 𝜕𝑐𝜕𝑡 𝜕𝑡𝜕𝑡 = −𝑢 𝜕𝑐𝜕𝜀 + 𝜕𝑐𝜕𝑡  
(21) 

 

Then,  

 𝜕𝑐(𝑥, 𝑡)𝜕𝑡 = 𝐷 𝜕2𝑐(𝑥, 𝑡)𝜕𝜀2  
(22) 

 

The solution of equation 22 is 

 𝑐(𝑥, 𝑡) = 𝑚√4𝜋𝐷𝑡 𝑒− 𝜀24𝐷𝑡 = 𝑚√4𝜋𝐷𝑡 𝑒−(𝑥−𝑢𝑡)24𝐷𝑡  
(23) 

  

iii) Instanateous point source several 

dimensión with wind 

 

 

In two dimension is a similar way  

 𝐷 (𝜕2𝑐(𝑥, 𝑦, 𝑡)𝜕𝑥2 + 𝜕2𝑐(𝑥, 𝑦, 𝑡)𝜕𝑦2 ) = 𝜕𝑐(𝑥, 𝑦, 𝑡)𝜕𝑡  
(24) 

  

Applying the Fourier transform we obtain 
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𝑐(𝑥, 𝑦, 𝑡) = 12𝜋 ∫ 𝑑𝑘𝑥𝑑𝑘𝑦∞
−∞ 𝑐̃(𝑘𝑥 , 𝑘𝑦 , 𝑡)𝑒𝑖𝑘𝑥𝑥𝑒𝑖𝑘𝑦𝑦 

(25) 

 

It is worth mentioning that we will change the notation 𝑐̃ =𝑐̃(𝑘𝑥 , 𝑘𝑦, 𝑡), and when substituting in the differential equation 

we obtain 

 𝐷(−𝑘𝑥2 − 𝑘𝑦2)𝑐̃ = 𝜕𝑐̃𝜕𝑡  

 

(26) 

The general solution of the first-order linear differential 

equation is 

 �̃� = 𝐴(𝑘𝑥 , 𝑘𝑦)𝑒−𝐷(𝑘𝑥2+𝑘𝑦2)𝑡 (27) 

 

The source of contamination would be given as an initial 

condition 

 𝑐(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦)= 12𝜋 ∫ 𝑑𝑘𝑥𝑑𝑘𝑦𝑐̃(𝑘𝑥 , 𝑘𝑦 , 0)𝑒𝑖𝑘𝑥𝑥𝑒𝑖𝑘𝑦𝑦∞
−∞  

(28) 

 

The inverse transform 

 𝑐̃ = 12𝜋 ∫ 𝑑𝑥𝑑𝑦𝑓(𝑥, 𝑦)𝑒−𝑖𝑘𝑥𝑥𝑒−𝑖𝑘𝑦𝑦∞
−∞  

(29) 

 

Then, we define 

 

 𝐴(𝑘𝑥 , 𝑘𝑦) = 12𝜋 ∫ 𝑑𝑥𝑑𝑦𝑓(𝑥, 𝑦)𝑒−𝑖𝑘𝑥𝑥𝑒−𝑖𝑘𝑦𝑦∞
−∞  

(30) 

  

The solution of the equation (24) is 

 

 

𝑐̃(𝑘𝑥 , 𝑘𝑦, 𝑡) = 12𝜋 ∫ 𝑑𝑥𝑑𝑦𝑓(𝑥, 𝑦)𝑒−𝑖𝑘𝑥𝑥𝑒−𝑘𝑥2𝐷𝑡𝑒−𝑖𝑘𝑦𝑦𝑒−𝑘𝑦2𝐷𝑡∞
−∞  

(31) 

or  𝑐(𝑥, 𝑦, 𝑡) = ( 12𝜋)2 ∫ 𝑑𝑥′𝑑𝑦′𝑓(𝑥′, 𝑦′) ∫ 𝑑𝑘𝑥𝑑𝑘𝑦𝑒𝑖𝑘𝑥𝑥−𝑖𝑘𝑥𝑥′𝑒−𝑘𝑥2𝐷𝑡𝑒𝑖𝑘𝑦𝑦−𝑖𝑘𝑦𝑦′𝑒−𝑘𝑦2𝐷𝑡∞
−∞

∞
−∞  

(33) 

 

Furthermore,  

 ∫ 𝑒−𝑘2𝐷𝑡+𝑖𝑘(𝑥−𝑥´)𝑑𝑘 = √𝜋∞
−∞ 𝑒−(𝑥−𝑥′)24𝐷𝑡√𝐷𝑡  

(34) 

 

To demonstrate the above we must complete the perfect 

square binomial 

 

 −𝑘2𝐷𝑡 + 𝑖𝑘(𝑥 − 𝑥´) = −𝐷𝑡[𝑘2 − 𝑖𝑘𝐷𝑡 (𝑥 − 𝑥′) + 14𝐷2𝑡2 (𝑥 − 𝑥′)2 − 14𝐷2𝑡2 (𝑥 − 𝑥′)2] 
(35) 

 

Then, 

 −𝑘2𝐷𝑡 + 𝑖𝑘(𝑥 − 𝑥´) = − 14𝐷𝑡 (𝑥 − 𝑥′)2[𝑘− 𝑖 (𝑥 − 𝑥′)2𝐷𝑡 ]2 

(36) 

 

Substituting this in the integral 

 ∫ 𝑒− 14𝐷𝑡(𝑥−𝑥′)2[𝑘−𝑖(𝑥−𝑥′)2𝐷𝑡 ]2𝑑𝑘 =∞
−∞ 𝑒− 14𝐷𝑡(𝑥−𝑥′)2 ∫ 𝑒−𝐷𝑡[𝑘−𝑖(𝑥−𝑥′)2𝐷𝑡 ]2𝑑𝑘 = √𝜋 𝑒−(𝑥−𝑥′)24𝐷𝑡√𝐷𝑡∞

−∞  

(37)  

 

The integral of has the form 

 

 ∫ 𝑒−𝑎𝑧2𝑑𝑧 = √𝜋𝑎∞
−∞  

(38) 

We define 

 𝐼 = ∫ 𝑒−𝑎𝑥2𝑑𝑥 =∞
−∞ ∫ 𝑒−𝑎𝑦2𝑑𝑦∞

−∞  
(39) 

 

 

Then, 𝐼2 = ∫ 𝑒−𝑎(𝑥2+𝑦2)𝑑𝑥𝑑𝑦∞
−∞  

(40) 

Making the change to polar coordinates we obtain 

 ∫ 𝑒−𝑎(𝑥2+𝑦2)𝑑𝑥𝑑𝑦∞
−∞ = ∫ ∫ 𝑒−𝑎𝑟2𝑟𝑑𝑟𝑑𝜃2𝜋

0
∞

0= 2𝜋 ∫ 𝑒−𝑎𝑟2𝑟𝑑𝑟∞
0  

(41) 

 

 ∫ 𝑒−𝑎𝑟2𝑟𝑑𝑟∞
0 = − 12𝑎 𝑒−𝑎𝑟2|0

∞ = 12𝑎 
(42) 

 

Finally, 
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𝐼 = √𝜋𝑎  
(43) 

We obtain that  

 𝑐(𝑥, 𝑦, 𝑡) = 14𝜋𝐷𝑡 ∫ 𝑑𝑥′𝑑𝑦′𝑐(𝑥′, 𝑦′, 0)𝑒−(𝑥−𝑥′)24𝐷𝑡∞
−∞ 𝑒−(𝑦−𝑦′)24𝐷𝑡  

(44) 

 

Taking as a Dirac Delta type source, 

 𝑐(𝑥′, 𝑦′, 0) = 𝑚𝛿(𝑥′ − 𝑥0)𝛿(𝑦′ − 𝑦0) (46) 

 

This leads to 

 𝑐(𝑥, 𝑦, 𝑡) = 𝑚4𝜋𝐷𝑡 𝑒−(𝑥−𝑥0)24𝐷𝑡 𝑒−(𝑦−𝑦0)24𝐷𝑡  
(47) 

 

In general,  

 

 

𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑚(4𝜋𝐷𝑡)3/2 𝑒−(𝑥−𝑢𝑡)24𝐷𝑡 𝑒−(𝑦−𝑣𝑡)24𝐷𝑡 𝑒−(𝑧−𝐻)24𝐷𝑡  
(48) 

 

If we define  4𝐷𝑡 = 2𝜎2 (49) 

 

The general solution is given the 𝜎 parameter 

 𝜎 = √2𝐷𝑡 (50) 

  

The equation (48) is now of the form 

 𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑚(2𝜋)3/2𝜎𝑥𝜎𝑦𝜎𝑧 𝑒−(𝑥−𝑢𝑡)22𝜎𝑥2 𝑒−(𝑦−𝑣𝑡)22𝜎𝑦2 𝑒−(𝑧−𝐻)22𝜎𝑧2  
(51) 

 

iv) Several instantataneous point sources  

 

 

In the case of two sources, we use the Dirac Delta for two 

different sites 

 𝑐(𝑥′, 𝑦′, 0) = 𝑚0𝛿(𝑥′ − 𝑥0)𝛿(𝑦′ − 𝑦0) + 𝑚1𝛿(𝑥′ − 𝑥1)𝛿(𝑦′ − 𝑦1) (52) 

Then,  

 𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑚0(2𝜋)32𝜎𝑥0𝜎𝑦0𝜎𝑧0 𝑒−(𝑥−𝑢𝑡)22𝜎𝑥02 𝑒−(𝑦−𝑣𝑡)22𝜎𝑦02 𝑒−(𝑧−𝐻0)22𝜎𝑧02
 

+ 𝑚1(2𝜋)3/2𝜎𝑥1𝜎𝑦1𝜎𝑧1 𝑒−(𝑥−𝑥1−𝑢𝑡)22𝜎𝑥12 𝑒−(𝑦−𝑦1−𝑣𝑡)22𝜎𝑦12 𝑒−(𝑧−𝐻1)22𝜎𝑧12
 

(53) 

If we have several sources, 

 𝑐(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝑚𝑖(2𝜋)3/2𝜎𝑥𝑖𝜎𝑦𝑖𝜎𝑧𝑖 𝑒−(𝑥−𝑥𝑖−𝑢𝑡)22𝜎𝑥𝑖2 𝑒−(𝑦−𝑦𝑖−𝑣𝑡)22𝜎𝑦𝑖2 𝑒−(𝑧−𝐻𝑖)22𝜎𝑧𝑖2𝑛
𝑖=1  

 

(54) 

 

v) Point source emission at a certain time  

Palazzi and colleagues (Palazzi et al. 1982) developed a theory 

about difusión of pollution in a short time. In this section, step 

by step we developed the model.  

 𝑐(𝑥, 𝑦, 𝑧) = ∫ 𝑞(2𝜋)32𝜎𝑥𝜎𝑦𝜎𝑧 𝑒−(𝑥−𝑢𝑡′)22𝜎𝑥2 𝑒− 𝑦22𝜎𝑦2 𝑒−(𝑧−𝐻)22𝜎𝑧2 𝑑𝑡𝑡
0 ′ (66) 

 

And 𝑥′ = 𝑢𝑡′ then,  

 𝑐(𝑥, 𝑦, 𝑧) = ∫ 𝑞(2𝜋)32𝜎𝑥𝜎𝑦𝜎𝑧 𝑒−(𝑥−𝑢𝑡′)22𝜎𝑥2 𝑒− 𝑦22𝜎𝑦2 𝑒−(𝑧−𝐻)22𝜎𝑧2 𝑑𝑡∞
0 ′ (67) 

 

We define 𝛼 = 𝑥−𝑢𝑡′√2𝜎𝑥  

 𝑐(𝑥, 𝑦, 𝑧) = − √2𝑞(2𝜋)32𝜎𝑦𝜎𝑧𝑢 𝑒− 𝑦22𝜎𝑦2 𝑒−(𝑧−𝐻)22𝜎𝑧2 ∫ 𝑒−𝛼2𝑑𝛼−∞
𝑥√2𝜎𝑥  

(68) 

 

Or 

 𝑐(𝑥, 𝑦, 𝑧)= 𝑞4𝜋𝜎𝑦𝜎𝑧𝑢 𝑒− 𝑦22𝜎𝑦2 𝑒−(𝑧−𝐻)22𝜎𝑧2 √2𝜎𝑥 √𝜋2 𝑒𝑟𝑓𝑐(− 𝑥√2𝜎𝑥) 

(70) 

 

It is very important to note that when 𝑡 → ∞, then 
𝑥√2𝜎𝑥 → ∞ so  

 𝑐(𝑥, 𝑦, 𝑧) = 𝑞2𝜋𝜎𝑦𝜎𝑧𝑢 𝑒− 𝑦22𝜎𝑦2 𝑒−(𝑧−𝐻)22𝜎𝑧2  
(71) 

 

When we have inversion problem, then 

 𝑐(𝑥, 𝑦, 𝑧) = 𝑞2𝜋𝜎𝑦𝜎𝑧𝑢 𝑒− 𝑦22𝜎𝑦2 (𝑒−(𝑧−𝐻)22𝜎𝑧2 + 𝑒−(𝑧+𝐻)22𝜎𝑧2 ) 
(72) 

 

If 𝑧 = 0, this means on the ground  

 𝑐(𝑥, 𝑦, 𝑧) = 𝑞𝜋𝜎𝑦𝜎𝑧𝑢 𝑒− 𝑦22𝜎𝑦2 𝑒− 𝐻22𝜎𝑧2 
(73) 

 

On the other hand, by tanking 𝛼 = 𝑥−𝑢𝑡′√2𝜎𝑥  

 𝑐(𝑥, 𝑦, 𝑧) = − √2𝑞(2𝜋)32𝜎𝑦𝜎𝑧𝑢 𝑒− 𝑦22𝜎𝑦2 𝑒−(𝑧−𝐻)22𝜎𝑧2 ∫ 𝑒−𝛼2𝑑𝛼𝑥−𝑢𝑇√2𝜎𝑥𝑥√2𝜎𝑥  
(74) 

 

Then,  
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𝑐(𝑥, 𝑦, 𝑧) = − √2𝑞(2𝜋)32𝜎𝑦𝜎𝑧𝑢 𝑒− 𝑦22𝜎𝑦2 𝑒−(𝑧−𝐻)22𝜎𝑧2 ∫ 𝑒−𝛼2𝑑𝛼𝑥−𝑢𝑇√2𝜎𝑥𝑥√2𝜎𝑥  
(75) 

 

Let see 

 ∫ 𝑒−𝛼2𝑑𝛼𝑥−𝑢𝑇√2𝜎𝑥𝑥√2𝜎𝑥 = ∫ 𝑒−𝛼2𝑑𝛼0
𝑥√2𝜎𝑥 + ∫ 𝑒−𝛼2𝑑𝛼 =𝑥−𝑢𝑇√2𝜎𝑥0− ∫ 𝑒−𝛼2𝑑𝛼𝑥√2𝜎𝑥0 + ∫ 𝑒−𝛼2𝑑𝛼𝑥−𝑢𝑇√2𝜎𝑥0  

(76) 

 

Finally,  

 𝑐(𝑥, 𝑦, 𝑧) = − √2𝑞(2𝜋)32𝜎𝑦𝜎𝑧𝑢 𝑒− 𝑦22𝜎𝑦2 𝑒−(𝑧−𝐻)22𝜎𝑧2 (− ∫ 𝑒−𝛼2𝑑𝛼𝑥√2𝜎𝑥0+ ∫ 𝑒−𝛼2𝑑𝛼𝑥−𝑢𝑇√2𝜎𝑥0 ) 

 

(77) 

By using the error function described in Weber and Arfken 

(2003), 

 erf(𝑧) = 2√𝜋 ∫ 𝑒−𝑥2𝑑𝑥𝑧
0  

(78) 

Then,  

 

 

𝑐(𝑥, 𝑦, 𝑧) = 𝑞4𝜋𝜎𝑦𝜎𝑧𝑢 𝑒− 𝑦22𝜎𝑦2 𝑒−(𝑧−𝐻)22𝜎𝑧2 [erf ( 𝑥√2𝜎𝑥) − erf (𝑥−𝑢𝑇√2𝜎𝑥 )] 

 

(80) 

The above is valid for when the sources are finite at the time 

where T is the emission time. For times greater than or equal 

to T we have 

 𝑐(𝑥, 𝑦, 𝑧) = 𝑞4𝜋𝜎𝑦𝜎𝑧𝑢 𝑒− 𝑦22𝜎𝑦2 𝑒−(𝑧−𝐻)22𝜎𝑧2 [ erf (𝑥−𝑢(𝑡−𝑇)√2𝜎𝑥 ) −erf (𝑥−𝑢𝑇√2𝜎𝑥 )] 

(81) 

 

Equations 80 and 81 are the same results that Palazzi et al 

(1982) obtained.  

 

vi) Linear pollution source  

 

To study linear sources we will use the superposition principle 

with a constant concentration along the line. So, we have 

 𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑚0(2𝜋)3/2𝜎𝑥𝜎𝑦𝜎𝑧 𝑒−(𝑥−𝑢𝑡)22𝜎𝑥2 𝑒−(𝑦−𝑣𝑡)22𝜎𝑦2 𝑒−(𝑧−𝐻)22𝜎𝑧2  
(82) 

 

Integrating with respect 𝑦 in the interval [−𝑎, 𝑎] and assuming 

that 𝑣 = 0 we have 

 𝑐(𝑥, 𝑦, 𝑧, 𝑡)= 𝑚0(2𝜋)3/2𝜎𝑥𝜎𝑦𝜎𝑧 𝑒−(𝑥−𝑢𝑡)22𝜎𝑥2 𝑒−(𝑧−𝐻)22𝜎𝑧2 ∫ 𝑒−12( 𝑦𝜎𝑦)2𝑎
−𝑎 𝑑𝑦 

(83) 

 

To solve this integral, special functions are used that are called 

the error function or numerically (Weber and Arfken, 2003). 

On the other hand, are parameters that represent the 

dispersion coefficients and they depend on environmental factors used in Briggs’s equations as shown in table 2 
(Arystanbekova, 2004).  

 

Table 2. Briggs’ formulae for defining plume semi-width. 

Atmosphere 

stability class in 

accordance with 

Pasquill 

σx,σy (m) σz (m) 

Open country 

A 0.22X (1 + 0.0001 X)-1/2 0.2 X 

B 0.16X (1 + 0.0001 X)-1/2 0.12 X 

C 0.11X (1 + 0.0001 X)-1/2 0.08X (1 + 0.0002 X)-1/2 

D 0.08X (1 + 0.0001 X)-1/2 0.06X (1 + 0.0015 X)-1/2 

E 0.06X (1 + 0.0001 X)-1/2 0.03X (1 + 0.0003 X)-1 

F 0.04X (1 + 0.0001 X)-1/2 0.016X (1 + 0.0003 X)-1 

City 

A-B 0.32X (1 + 0.0004 X)-1/2 0.24X (1 + 0.001 X) 

C 0.22X (1 + 0.0004 X)-1/2 0.2 X 

D 0.16X (1 + 0.0004 X)-1/2 0.14X (1 + 0.0003 X)-1/2 

E-F 0.11X (1 + 0.0004 X)-1/2 0.08X (1 + 0.0015 X)-1/2 

Here X  is the distance from the stack along with the plume ax. 

 

4. CONCLUSION 

The transport of pollutants is done by studying differential 

equations and semi-empirical proposals with which packages 

such as ALOHA are made. In this work we described via the 

conservation of mass equation and, Fick's law, which is an 

empirical proposal, the transport of a pollutant in the air. Also, 

the goodness of working with the Fourier transform was 

shown. As a proposal of the work, it is to include this type of 

development in the courses of simulation of environmental 

systems or the course of air quality so that the student 

understands the support of the programs like ALOHA and, to 

see an application of the courses of differential equations and 

Physics. 
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