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Abstract: 
2,4,6-Trichlorophenol is a ubiquitous, persistent and toxic pollutant having various industrial applications 

resulting in its wide presence in industrial wastewaters. Non-ionized form of the compound is highly 

bioaccumable. Therefore, purpose of present investigation was to study the ecotoxicity of 2,4,6-

Trichlorophenol on seeds of Vigna radiata (Mung bean). The seeds were allowed to germinate in increasing 

concentrations of 2,4,6-Trichlorophenol and parameters like percent seed germination, root elongation, 

germination index and protein content were determined after 5 days treatment. 50% effect concentration 

was found to be 16.40 mg/L. 2,4,6-Trichlorophenol inhibited germination and root elongation in a dose 

dependent manner. Germination Index was reduced to 14.81 with 16mg/L treatment and to 2.97 with 

20mg/L treatment. Root elongation was reduced to 44.61% with 16mg/L treatment. Protein content in roots 

increased with increasing 2,4,6-Trichlorophenol concentration and was not significantly affected in shoots. 

This is probably the first report on ecotoxicity potential of 2,4,6-Trichlorophenol on Vigna radiata, 

suggesting its use as a model for toxicity assessment of chlorophenols. The change in protein content is 

indicative of some defence mechanism existing within the plant suggesting its phytoremediation potential, 

which could be explored further. 
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1. Introduction:
With an era of acceleratory industrialization, more 

and more industrial waste water containing 

organic and inorganic pollutants is being 

discharged into the environment. Xenobiotics 

produced as a consequence of anthropogenic 

activities is a serious cause of environmental 

pollution. Amongst the various halogenated 

organics released, 2,4,6-Trichlorophenol (2,4,6-TCP) 

constitutes a fundamental pollutant that is highly 

toxic, bioaccumable, persistent and ubiquitously 

present due to its wide industrial application 

(Barber et al., 1995; Ruzgas et al., 1995). The 

industrial application of 2,4,6-TCP ranges from its 

use as a preservative for wood, leather and textile 

goods (Männistö et al., 1999; Kharoune et al., 

2002), to a bactericide & fungicide (Fragiadakis et 

al., 1981). It is used as a precursor for the 

synthesis of herbicides (Rappe, 1980). It is also 

produced by chlorination of lignin and is therefore 

present in kraft paper mill effluent (Karn and Balda, 

2013). Such immense production and faulty waste 

disposal practices have led to its tremendous 

distribution across ecosystems. Chlorophenols are 

considered possible carcinogens to human by the 

International Agency of Research on Cancer (IARC, 

1999) and they have been reported to obstruct 

photosynthesis in plants (Zha et al., 2006; Tissut et 

al., 1987). Thus, chlorophenols are significantly 

toxic giving considerable reasons to broadly study 

and explore their toxic potential. Disposal of 

wastewater into field crops is a means of 

managing wastewater, therefore, it is important to 

analyse how plants respond to such chemical 

attacks, as bioaccumulation of chlorophenols lead 

to their flow in the food chain (Doust et al., 1994). 

Various studies have been conducted to assess the 

toxicity of chlorophenols on different plant 

systems, Sharma et al. (1997) reported 

comparative toxicity and metabolism of different 

chlorophenols by Lemna gibba, Fragiadakis et al. 

(1981) studied the metabolism of 
14

C-2,4,6-TCP in

hydroponic tomato plants, O’Keefe et al. (1987) 

studied the metabolism of phenolic compounds by 

water hyacynth. But to the best of our knowledge 

there has been no report on the toxicity 

assessment of 2,4,6-TCP on Vigna radiata till date. 

Therefore, the present investigation was carried 

out with an objective to study the toxicity of 2,4,6-

TCP on seeds of Vigna radiata as it is a common 
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agricultural crop and a cheap source of protein, 

constituting an important part of natural 

ecosystem. It has been extensively used for 

toxicity assays due to its stress sensitivity, fast and 

cost effective methods that can be performed in 

limited space under controlled conditions (Panda 

et al., 2003; Kumar and Singhal, 2009). These kinds 

of bioassay are also preferred for toxicity tests 

because of ease of seed handling, fast metabolism 

and translocation of nutrients, rapid germination 

rate and absence of additional nutrients for plant 

growth (Wang et al., 2002). Growth changes are 

the first physiological signs that can be monitored 

after exposure to toxic compounds, therefore seed 

germination and root growth are important tools 

to analyse toxicity (Shoaib et al., 2011). Hence, 

Vigna radiata can serve as a model for evaluation 

of 2,4,6-TCP ecotoxicicity. 

. 

2. Materials and Methods: 
2.1. Preparation of 2,4,6-TCP Solution 

Analytical grade 2,4,6-TCP was purchased from 

Merck, India. Stock solution with a concentration 

of 50mg/L was aseptically prepared in 1% 

methanol solution. 2,4,6-TCP solutions of 2, 4, 6, 8, 

10, 12, 14, 16, 18 and 20 mg/L concentration were 

prepared from stock solution by dilution with 

distilled water. 

 

2.2. Seed Treatment with 2,4,6-TCP 

Seeds of Vigna radiata were purchased from local 

market. They were soaked in sterilized water for 6 

hrs followed by treatment with 0.1% HgCl2 and 

70% ethyl alcohol solutions for surface sterilization 

and thoroughly washed with sterilized distilled 

water. 15 healthy and equal sized seeds were 

placed on a Whatman (grade 41) filter paper, laid 

on absorbent cotton, moistened with 2ml of 2,4,6-

TCP solution of appropriate concentration 

(2,4,6,8,10,12,14,16,18 &20 mg/L) in a 90mm 

petridish (Mosse et al., 2010; Verma et al; 2011). 

The petridishes were sealed with tape to avoid 

water loss and were placed in a plant growth 

chamber with controlled temperature (20/25°C 

min/max) and light facility (8 hrs light period and 

16 hrs dark period). For 3 consecutive days, each 

day 2ml of freshly prepared 2,4,6-TCP solution of 

appropriate concentration was added to the 

respective petridish. The experiment was run in 

triplicates. Seed germination in distilled water was 

used as control. Germination, marked by the 

appearance of radical was assessed after the 

incubation period. 

 

 

 

2.3. Phytotoxicity Assessment 

After 72hrs incubation, root length was 

determined. Also, percentage seed germination, 

percentage root elongation and germination index 

(GI) were calculated according to Zucconi et al. 

(1981) as follows:  

 

      

                                                                                      

 
 

 
 

2.4. Estimation of Protein Content 

Total protein content of root and shoot was 

estimated by Folin-Lowry method (Lowry et al., 

1951). 

 

2.5. Statistical Analysis 

EC50 was calculated by GraphPad Prism Version 5, 

using non-linear regression analysis. The 

experiment was conducted in triplicates and 

statistical analysis was performed using SPSS, 

Version 20.0 by one-way ANOVA followed by post 

hoc LSD test at significance level of p<0.05 

 

3. Results and Discussion: 
3.1. Seed Germination 

After 5 days treatment with 2,4,6-TCP, a significant 

dose dependent decrease in percentage seed 

germination was observed from 10 mg/L 

concentration (91.66±7.22 %), maximum decrease 

being noted with 18mg/L (20.83±7.22 %) and 

20mg/L (20.83±7.21 %). 100% seed germination 

was recorded from 2 mg/L to 8 mg/L 

concentrations, revealing insignificant toxicity at 

lower concentrations (table 1). Post-hoc test 

showed significant difference (p<0.05) between 

percentage seed germination with 10 mg/L, 14 

mg/L, 16 mg/L and 18 mg/L 2,4,6-TCP 

concentrations. Previous studies have reported the 

inhibitory effect of phenols on seed germination 

(Kuiters, 1989). Since, water uptake is required for 

shedding the seed coat for radical emergence 

(Castro et al., 2000), inhibition of seed germination 

may be due to the hydrophobic nature of 2,4,6-

TCP which interferes with water activity and 

absorption inside the seed. Loomis and Battaile 

(1966) reported enzyme denaturation potential of 

some phenolic compounds. Mayer and Poljakoff-

Mayber (1963) showed that a number of phenol 

compounds inhibit respiration and early seedling 
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growth in lettuce by affecting mitochondrial 

metabolism and energy production as they are 

uncouplers of oxidative phosphorylation. The 

delay in germination may also be due to difference 

in seed coat permeability and differential uptake 

of water and toxin (Williams and Hoagland, 1982). 

 

3.2. Root Elongation 

An insignificant reduction (p>0.05)  in percentage 

root elongation was observed with 2mg/L 

(99.14±0.74 %) and 4 mg/L (97.42±2.24 %) as 

compared to control (100 %) and with 4 mg/L 

(97.42±2.24 %), 6mg/L (96.11±1.27 %) and 8mg/L 

(96.12±2.22 %) as compared to 2mg/L (99.14±0.74 

%) 2,4,6-TCP treatment. However, a significant 

dose dependent inhibition was observed from 

10mg/L concentration (90.93±2.16 %), which 

reduced to 14.74±2.18 % at 20mg/L 2,4,6-TCP 

treatment (Table 1). Earlier reports proposed that 

some phenols stimulate root growth at lower 

concentrations (Wang, 1985 b), but the inhibitory 

effect at higher concentrations could possibly be 

due to the impact of 2,4,6-TCP on cell division in 

the apical root meristem cells.  However, this 

needs to be verified by further studies. Toxicity 

was also revealed morphologically as the roots 

became curved, thin, fragile and sticky. Previous 

studies have reported that phenolic compounds 

have a greater effect on seedling growth than 

germination (Rasmussen and Einhellig, 1977). 

Compounds distribute themselves between 

aqueous and lipid phases according to their 

octanol-water partition coefficient. Glass (1973) 

therefore, proposed that being lipophillic, 

uncoupling phenols restrict both, transport and 

respiration by affecting membrane permeability 

and biochemical gradient. Numerous studies have 

proposed that phenolic compounds affect 

fundamental plant processes such as, respiration 

and protein synthesis consequently inhibiting plant 

growth (Demos et al., 1975). 

 

3.3 Germination Index 

Germination Index (GI) is a marker of early plant 

growth (Mosse et al., 2010). GI did not change 

significantly from control to 8 mg/L 2,4,6-TCP 

treatment. However, GI decreased dose 

dependently from 10 mg/L (83.30±5.82) to 18 

mg/L (6.47±2.51) 2,4,6-TCP treatment (table 1). 

Mosse et al. (2010) emphasised on the role of GI 

for determining phytotoxicty of winery wastewater 

on crop species. Thus, the results are indicative of 

2,4,6-TCP toxicity on the species tested.  

 

3.4. EC50 

Toxicity of 2,4,6-TCP is represented by 50% effect 

concentration (EC50). The EC50 value for Vigna 

radiata was reported to be 16.40 mg/L (Fig. a). The 

result is in agreement with the EC50 value 

obtained by Wang (1985 a) who reported 16 mg/L 

as the EC50 value of 2,4,6-TCP on both millet and 

velvetleaf. In another experiment Wang (1985 b) 

reported 10mg/L as the EC50 value of 2,4,6-TCP on 

millet. Sharma et al. (1997) reported 2.1µM as the 

EC50 value of 2,4,5-TCP on Lemna gibba.  

 

 

Table 1: Effect of 2,4,6-TCP on germination of Vigna radiata seeds 
 

Treatment 

(2,4,6-TCP) 

Seed 

Germination (%) 

Average Root 

Length (Cm) 

Root Elongation 

(%) 

Germination 

Index (GI) 

Control 100±0.00
a 

7.68±0.28
a 

100±0.00
a
 100±0.00

a
 

2   mg/L 100±0.00
a 

7.27±0.15
ab 

99.14±0.74
ab

 99.14±0.74
a
 

4    mg/L 100±0.00
a 

7.33±0.06
ab 

97.42±2.24
ab

 97.42±2.24
a
 

6    mg/L 100±0.00
a 

6.87±0.35
bc 

96.11±1.27
b
 96.11±1.27

a
 

8    mg/L 100±0.00
a 

6.43±0.25
c 

96.12±2.22
b
 96.12±2.22

a
 

10  mg/L 91.66±7.22
b 

6.30±0.30
c 

90.93±2.16
c
 83.30±5.82

b
 

12  mg/L 87.50±0.00
b 

5.10±0.50
d 

67.99±2.30
d
 59.49±2.01

c
 

14  mg/L 66.67±7.22
c 

4.83±0.90
d 

57.99±1.26
e
 38.71±4.82

d
 

16  mg/L 33.33±7.22
d 

3.43±0.20
e 

44.61±3.12
f
 14.81±3.05

e
 

18  mg/L 20.83±7.22
e 

2.53±0.50
f 

30.72±2.30
g
 6.47±2.51

f
 

20  mg/L 20.83±7.21
e 

1.43±0.51
g 

14.74±2.18
h
 2.97±0.74

f
 

Different letters in each column represents significant difference between treatments at p<0.05. 
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Figure a: Toxicity of 2,4,6-TCP on Vigna radiata represented by EC50. 

 

 

3.5. Protein Content 

Protein content of roots increased in a dose 

dependent manner and a significant difference 

was recorded with 2, 4, 6, 8, 10, 12, 14, 16, 18 and 

20 mg/L 2,4,6-TCP treatment as compared to 

control, values being 1.32±0.08, 1.29±0.02, 

1.37±0.12, 1.66±0.05, 1.40±0.10, 1.40±0.10, 

1.52±0.68, 2.75±0.22, 4.50±0.10, 5.20 and 

0.57±0.03±0.10 µg/µl, respectively. Effect of the 

treatment on protein content of shoots showed a 

similar trend, increasing from 3.82±0.02 µg/µl in 

control to 4.13±0.02 µg/µl with 20 mg/L treatment. 

However, the increment in protein content of 

roots was found to be greater than that in shoots 

(table 2). 

 

The increase in root protein concentration could 

be attributed to the induction of stress proteins 

and/or enzymes in response to 2,4,6-TCP, 

exhibited because of the commencement of free-

radical chain reactions in the membrane, or some 

other non specific interaction. One possible 

explanation could be the interference of 2,4,6-TCP 

in important metabolic and biosynthetic pathways 

through the generation of ROS that can associate 

with a number of biomolecules. 2,4,6-TCP is 

adsorbed and absorbed by the roots from solution. 

Its translocation to shoots is determined by 

octanol-water partition coefficient (Kow ) with the 

movement decreasing with increasing Kow values 

suggesting slower movement of the compounds to 

shoots (Briggs et al., 1982). 

 

 

 

 

 

The increase in protein concentration could also 

be a result of glycosylation and amino acid 

conjugation of toxic organic compounds that is 

used as a defensive mechanism by plants 

(Davidonis et al., 1982; Edwards et al., 1982; 

Casterline et al., 1985). However, this conjugation 

can be broken down under acidic conditions 

(Sharma et al., 1997 ). Biswas et al. (2010) 

reported that a number of enzymes are induced in 

response to stress and that class III peroxidise is a 

common class of stress induced enzymes in plants 

(Passardi et al., 2005). Therefore, alternations in 

the amount of antioxidant enzymes and 

metabolites generated in response to stress could 

also contribute to the observed pattern suggesting 

that the plant might have evolved a defence 

mechanism and thus, could be explored for 

phytoremediation. Reduced toxicity in shoots 

might be because of the compound concentration 

in roots which minimised its translocation. 

However, screening for the presence of these 

antioxidant enzymes is required for further 

explanation. 
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Table 2: Effect of 2,4,6-TCP on protein profile of 

Vigna radiata 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Different letters in each column represents 

significant difference between treatments at 

p<0.05 

 

4. Conclusion: 
The study shows that 2,4,6-TCP exhibits significant 

toxicity to the legume, Vigna radiata with an EC50 

value of 16.4 mg/L affecting germination, root 

growth and protein content in a dose dependent 

manner. In general the toxicity of chlorophenols 

can be attributed to the uncoupling character 

which interferes with electron/proton movement 

involved in important cellular metabolic processes 

and their binding with a variety of biomolecules 

altering biological functions. Substituted chlorine 

molecules increase hydrophobicity and reactivity 

of phenols and octanol-water partition coefficients 

dictate their translocation in the plant. Damage 

occurs when defence mechanisms are lower than 

the generation of reactive oxygen species. Thus, 

the study provides a conclusive evidence that 

Vigna radiata could be used as a potential model 

for ecotoxicity study of chlorophenols and could 

also be explored for its phytoremediation potential. 
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