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ABSTRACT 
 

The objective of this research was to investigate the behavior of cables with two springs-damper and one viscous damper. To this end, a major 

mode is adopted to control the vibration of the cable. In this mode, two damping springs are connected to both ends of the cable. The purpose 

is to reduce the vibrations of the cable by placing a third damper. In this case, employing spectral power density diagrams, the impact of the 

third damper on declining the vibration of the cable in the first three modes was presented for various values of damping coefficient for all 

three dampers and different damping installation places. 
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1. INTRODUCTION 
 

Suspended steel cables are extensively used in modern bridges 

now. But, as the extents of these bridges become larger, and, 

thus, the length of the cables used increments, the problem of 

vibration in these cables becomes more visible. In some 

instances, it has been seen that the natural frequency of the 

cable agrees with the frequency of loads applied by natural 

forces. Thus, the phenomenon of resonance happens in these 

bridges. These forces are formed by wind, rain, vehicle 

movement on the bridge deck, or walker. If the vibration of 

bridge cables is not controlled by auxiliary dampers, it can cause 

fatigue in the cable, as well as at the junction of the bridge and 

the deck. The viscous damper is one of the devices that can be 

used to overcome the vibration of bridges. These dampers are 

now used in many notable bridges in the world. However, the 

damping applied to the cable by these dampers is limited owing 

to the restricted locations of these dampers, which are usually 

at up to 5% of the cable length from the end of the path. Hence, 

it is quite important to reach maximum damping in the cable by 

devising fitting dampers. These include the Breton Bridge in 

France, the Sunshine Skyway Bridge in Florida, and the Aristotle 

Bridge in Japan. Nevertheless, the design of these dampers has 

been done empirically working experiments like wind tunnels. 

Accordingly, it is necessary to be able to create methods for the 

design of these dampers without the cost of numerical analysis 

techniques. In this project, such methods were studied. 

The design methods of viscous dampers have been reviewed by 

various authors. In 2001, Main and Jones (2001) managed to 

reach an approximate equation for the curve suggested by 

Pachecco by analytically solving the motion equation governing 

the cable, and adopting some simplifying premises such as the 

closeness of the damper to the end of the cable. They also 

studied the effect of the damper when it is at a substantial 

distance from the end of the cable in (Main and Jones, 2002) by 

examining the analytical solution of the equation governing 

cable movement. According to their research, as the distance of 

damper to the end of the cable increases, different behavioral 

regimes appear in the cable's behavior, and new oscillating 

modes arise in the cable. Overall, they were able to list three 

types of behavioral regimes for moving cables. In 2003, Main 

and Jones recognized the effect of hardness on the damper. This 

mode is considered by modeling a spring with a linear hardness 

attached to the damper. They settled that when the damper has 

a hardness, the hardness effect can be modeled by decreasing 

the distance of the damper with the end of the cable. In fact, they 

came up with an equation to obtain an effective damping 

location with hardness. The solution methods of all the cited 

authors were based on the finite series method. Furthermore, 

all these authors considered the vibration behavior of the cable 

as linear. Another detail is that all the authors have examined 

the case where only one damper connected to the cable. The 

modeling of the cable's elements was done by the finite element 

method by some authors in the past. For illustration, one can 

refer to references (Ozdemir, 1979; Jayaraman AND Knudson, 

1981; Wang et al., 1998; Ni et al., 2002). The benefit of the finite 

element method is that the effect of attaching the dampers and 

the spring to the cable can be easily taken into account by 

joining the damping coefficient in the total damping matrix and 

the spring stiffness coefficient in the total cable stiffness matrix. 

So far, few authors have studied the nonlinear behavior of 

cables owing to considerable deformations. For instance, YU 

and XU in 1999 modeled the cable motion nonlinearly 

employing the finite difference method. 

  It is clear that the vibration status of the cable, when two or 

three dampers are connected to it, has not been examined so far, 

which is examined in this research. 

2. MATERIALS AND METHODS 

Cable treatment with a linear viscous damper 

By neglecting the flexural stiffness of the cable and assuming 

linear behavior, the differential equation dictating the 

movement of the cable is: 
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Using the Galerkin's method and using )(0 xi  functions as 

weight functions, applying the orthogonality feature, we have: 
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Where 
ij  is the Cronker Delta function. Thus, Equation (1) 

becomes the following matrix: 
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Equation (7) involves dimensionless cable and damper 

parameters. 
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Practical span of cable and damper values 

01

,/,
mL

c
Lxi c

 are independent from one another. 

Due to administrative issues, the damper can only be linked to 

the end of the cable. 

In most cases, the product of two values, i, xc / L, is less than 

15%. 

Further, the real range of the 

01.. Lm

c  is known and  

practically there is no need to consider much great values for c. 

Because in this case, it is as if where the damper is, a support is 

placed. Thus the modal attenuation ratio will tend to zero once 

more. Because the existence of this support will not allow 

energy loss by the cable. 

Cable behavior with a single spring-damper system 

As in (Wang et al., 1998), the impact of the spring or the 

existence of stiffness in the damper can be displayed as the 

reduction of the distance of the damper from the end of the 

cable. 

Assuming low intrinsic damping and ignoring the flexural 

stiffness, the differential equation ruling the cable can be 

written as: 

(8) 
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The balance of forces where the spring and the damper join as 

follows: 
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Zero displacement boundary conditions must likewise be met at 

the ends of the cable, and the cable displacement must be 

constant at the intersection of the spring and the damper. 

 

The answer to the equation with boundary conditions and 

continuity is: 
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Where ac, ak respectively indicate the size of the spring and 

damper. In general, they are complex and induce the phase 

difference between the two points. 

In (9), K represents the effect of the spring, and is defined as:
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(12) 

If k=0, then K=0 and the equation is imaginary. While the term 

on the right is complex in general. Hence, by zeroing the real 

part, an equation is reached to determine the specific 

frequencies that are independent of the damping coefficients c. 

This equation can be reformulated as: 
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Where: 
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Further, the complex frequencies are can be written as: 
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For the special condition where the spring and damper are at 

the same point, Equation (12) is rewritten as: 
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In this case, we have: 
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Therefore, the effect of the spring is like reducing the effective 

location of the damper. 

 

Study and analysis of the equation of free vibration of the 

cable with a damper Problem formulation 

The goal of this section is to investigate the behavior of the cable 

in general to provide an analytical solution to the free vibration 

equation of the cable. The system under study is presented in 

Figure (1). 

 
Figure 1. The studied system 

It is seen that the damper is split into two parts in which, l2≥l1. 

Considering that the tension in the cable is great compared to its 

weight, the natural flexural stiffness and damping of the cable 

are neglected. In fact, the cable is assumed to be straight and 

with no curvature. In this case, the resulting equation is 

established in each part of the cable: 
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Where yk(xk,t) is the lateral rise and xk is the coordinates in the 

direction of the cable in the k-th part of the cable. m is the mass 

of the unit length, and T is the tension in the cable. This equation 

is accurate in all parts of the cable but the damper attachment 

point. At this point, the boundary conditions for the 

continuation of cable relocation and balance of power must be 

met. Consider that dimensionless time is specified as: 

t01 =
 

(20) 

 

Where: 
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To solve Equation (19) by counting the boundary conditions, 

continuity, and equilibrium, the solution function is considered 

in the following separate form: 
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 Where λ is a dimensionless eigenvalue that is generally a 
complex number. In cases where the damping ratio is relatively large, most of the magnitude λ is related to its real part. In more detail, as the damping ratio raises, λ tends to a real number. By 
putting Equation (22) in Equation (19), the resulting ordinary 

differential equation is obtained: 
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 Since λ is a complex number, the solution of Equation (23), 

which actually gives the form of cable modes, will also be 

complex. The continuity of displacement at the damper and the 

boundary conditions of displacement at the ends of the cable 

can be met by holding that Equation (23) is solved as: 
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 Where γ is the solution at the damper location. The equilibrium 
equation at the damper position can be formulated as: 
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Where c is the damping coefficient of the damper. 

Differentiating the form the solution declared in Equations (22) 

and (24) and putting it in Equation (25), we obtain the following 

equation: 
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) 

Equation (26) is known as the frequency equation. For the 

special values Tmc /  and l1/L, Equation (26) can be solved 

immediately numerically to achieve the damping ratio in any 

coveted mode. Each special value can be formulated as a 

combination of real and imaginary parts as: 
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Where   is the damping ratio and 𝜔𝑖 is the quasi-nondamping 

natural frequency. 

By expanding Equation (27) and separating the imaginary and 

real parts, after simplification, the resulting equation is 

obtained:
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This Equation is independent of Tmc /  and its branches 

of solving gives the separate λ values for a given l1/L value. 

Accordingly, the permissible damping ratio values with the 

corresponding oscillating frequencies can be reached. Equation 

(28) is named the phase equation. While the solution branches 

of Equation (27) are symmetric revolving the σ = 0 axis, only the negative values of σ are counted here. Because positive σ values 
correspond to negative Tmc /  values, which does not 

make sense physically. Considering the real part of Equation 

(27), after simplification, the resulting equation is obtained:
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For a given value of λ with real and imaginary parts σ and   

satisfying Equation (27), the corresponding Tmc /  value 

can be achieved from (28). Equation (24) to calculate the shape 

of modes can be implicitly expanded into imaginary and real 

expressions to reach this equation: 
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Where the complex coefficients are denoted by Ak and are 

calculated by the following equation: 

( )LlyA kk /sinh/ =
 

(31) 

 

Three types of behavior can be regarded for the solution. The 

first is the decreasing non-oscillating behavior (corresponding to φ = 0), which is equal to a state named supercritical damping. 

Three types of behavior can be regarded for the solution. The 

first is the decreasing non-oscillating behavior (corresponding to φ = 0), which is equal to a state named supercritical damping. 
The other is the non-reducing oscillating behavior (σ = 0) 
equivalent to the zero damping state, and the last is where the 

damping directs towards the critical damping

( )→→  ,1 . 

For nonlinear analysis of cables and also in cases where the 

cable is attached to a damper, Newton-Raphson and Newmark 

methods are used. 

Analysis of nonlinear systems by Newmark method 

The Newmark equation displayed in the previous part for linear 

systems can also be used for nonlinear analysis. repetition 

methods can be used to eliminate the computational error. The 

key equation that is solved at each time step for nonlinear 

systems is as: 
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Where [KT] is the tangential stiffness matrix of the structure. In 

the following section, its formulation for the cable element will 

be given. This equation is nonlinear. Because the tangential 

stiffness [KT] depends on the displacement vector {U}. 

Currently, the iteration method is described following Figure 

(1). 
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Figure 2. Newton-Raphson iteration method in a time step 

(Figure from (Çakmak, 1996)) 

 

The first iterative step is to apply Equation (32) to the method 

described above: 
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 To determine {∆U(1)}, which is the first approximation for the 

final value {∆U}, the following steps are followed. Corresponding to the dislocation {∆U(1)} exists the real force {∆f(1)} which is lower than  P . Accordingly, the residual 

force is: 
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This additional displacement is used to determine a new value 

for the residual force, and the process keeps going until 

convergence is obtained. Note that in each iteration in relation 

(36), the Tangential stiffness matrix  
TK  also should be 

updated. 

The iteration process ends after I iterations, when the developmental displacement of {∆U(1)}   is very small compared 
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Thus, the evolution of displacement from the time step i to i + 1 

is reached from the following equation: 
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 With the known {∆Ui}, the calculation is as before. It is worth 

mentioning that in the computer program used, the permissible 

error rate ɛ equals 0.01. 

Calculation of the tangential stiffness matrix for the cable 

element 

As can be seen, to solve the dynamic problem by Newton-

Raphson method, it is needed to know the tangential stiffness 

matrix. Overall, this matrix is different from the element 

hardness matrix specified in Chapter 4. In fact, if the 

displacement vector is denoted by {U}, the following relation 

should hold for the tangential stiffness matrix [Kr]I in the i-th 

time step and the cable stiffness matrix [K] in the time steps i 

and i+1: 
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(39) 
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(40) 

Hence, if a relation can be specified as follows (which, as seen, is 

the case with the cable element), 
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Then by differentiating {Fi ({U})}, the following equation is 

achieved: 
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For the cable element, this is done, and ultimately, the element 

stiffness matrix [KT]J is obtained as follows: 
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Where [KOJ], [K1J], and [K2J] are respectively the first-, second-, 

and third-degree stiffness matrices and are determinable. 

3. RESULTS AND FINDINGS 

Specifications of the used cable 

In all cases discussed in this chapter, a cable with the 

specifications of Table (1) has been used: 

Table 1. Specifications of the cable used 

Length AS E(Mpa) m(kg/m) T(N) 

20 177 52/10x10 6 10000 

 

In this Table, AS is the cross section of the cable, E is the modulus 

of elasticity, m is the mass per unit length, and T is the tensile 

force of the cable. The first vibration frequency of such a cable 

is 1.02 Hz, which agrees with the first vibration frequency of a 

real-scale suspension bridge cable, usually between 1 and 3 Hz. 

Additionally, for cable modeling, 50 three-node cable elements 

of equal length have been employed. The curvature of the cable 

is neglected, and the cable is modeled directly. In cases where 

the cable is subjected to external stimulation, the damping 

matrix of the cable is considered according to the Riley model in 

proportion to the mass matrix and its initial stiffness matrix. 

That is: 

     KMC  +=  (46) 

The coefficients ɑ and β are chosen so that the damping ratio of 

the first two vibration modes of the cable equals 0.15%. For a 

cable specified as in Table (1), ɑ and β are respectively 0.0128 
and 1.56*10-4. The damping ratio of the cable has been neglected 

for the parts where the cable is analyzed for specific values. 

Cable behavior with the two-spring -dampers and one 

viscous damper 

The system studied here is a cable with two springs-damper and 

one extra viscous damper as in Figure (4). In practice, this 

system is used when the vibrations, despite the placement of 

two springs-dampers, is still considerable. The question is, 

"What should be the attenuation coefficient of the third damper 

for a given junction so that vibrations are reduced to the desired 

level?" That is, it is desirable to learn how much vibration 

energy the third damper can dissipate. The significance of this 

question becomes clearer with the next example. Suppose a 

cable with the characteristics in Table (1) is excited with a sine 

excitation function with a variable frequency of 0.5 to 10 Hz for 

120 seconds. Suppose that the place of application of the load is 

15% of the length of the cable from its end and its magnitude is 

10 Newtons. Also, assume that the two dampers employed have 

the same damping coefficient and are chosen to receive the 

maximum damping ratio in the first vibration mode. Also, it is 

assumed that these two dampers have no stiffness. For a cable 

with the specs of Table (1), for the connection of two springs-

dampers at 4% of the cable length, the damping coefficient of 

springs-dampers is 1900 N.s / m. Also, consider that the 

installation position of the viscous damper at 6% of the cable 

length and its damping coefficient is equal to the damping 

coefficient of the other two springs-dampers. To achieve an 

appropriate measure of the ability of the third damper to 

dissipate the vibration energy of the cable, the Power Spectrum 

Density (PSD) diagram is determined at all nodes, and the 

average spectrum received from all nodes is recorded as the 

average PSD. The resulting diagram is displayed in Figure (5). 

This figure further shows the average PSD curve for comparison 

with only two springs-dampers attached to the cable. 

According to the figure, when the damping coefficient of the 

third damper is equal to two springs-dampers, in the first mode 

it reduces by 13% and in the second mode by 5% of the 

vibration energy compared to the connection state of the two 

springs-dampers alone. In contrast, 2.5% adds to the energy of 

the mode in the third mode and 17% in the fourth mode. It is 

obvious from this case that the addition of a third damper may 

harm the damping ratio of the cable in some modes. 

 

 
Figure 3. Damping ratio curve in which the two dampers-springs are connected at x1/L=0.04 or χ=1. 
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Figure 4. Cable with two dampers-springs and a viscous damper 

 
Figure 5. Comparison of the average PSD with and without the installation of the third viscous damper. (Springs-dampers are connected 

at 4% of the cable length and the third damper is connected at 6% of the cable length and c1 = c2 = c3 = 1900N.s / m) 

To explain the cause of this happening, two limit states can be 

pictured for the third damper. The first case is the cable without 

the third damper (Figure (5)). In this case, the c3 / c1 ratio 

equals zero. 

In the second case, the third damper has an infinite damping 

coefficient. That is →3c , this state is presented in Figure 

(6). 

 
Figure 6. Cable with two springs-dampers and infinite 

coefficient of the third damper 

In this instance, the third damper locks the cable at the joint, and 

therefore effectively the spring-damper on the left will not 

perform a role in decreasing vibrations, and thus, the damping 

ratio of the cable is reduced. 

After seeing the above limit, it is assumed that the installation of 

a third attenuator, as presented in Figure (5), may decrease the 

damping ratio of the cable in some of its modes. Thus, in this 

section, we have tried to achieve suitable curves for the design 

of the third damper by performing sensitivity analysis like what 

was seen in the earlier example. 

To study the sensitivity in this section, a cable with the 

specifications of Table (1) is excited with a sine function with a 

variable frequency of 0.5 to 10 Hz at 15% of the cable length 

from the end with a magnitude of 10 N. The third damper is then 

moved away from the first damper to 20% of the cable length. 

The coefficient c1 equals the coefficient c2 and is chosen to 

provide the maximum damping ratio of the first mode. 

Additionally, the position of these two dampers is supposed to 
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be symmetrical. The resulting curves are displayed in Figures 

(7) a to c for the first three vibration modes of the cable. In these 

curves, it is seen that there is an optimal value of c3 / c1 for 

which the percentage of the decrease of vibrations hits its 

maximum value. Joining a c3 damping factor higher than this 

degrades the performance of the third damper. 

The chosen values for c1 in these curves is as follows. 

Rubbber bushings attached to 1% cable length→c1=7700N.s/m Rubbber bushings attached to 2% cable length→c1=3800N.s/m Rubbber bushings attached to 3% cable length→c1=2700N.s/m 

Rubbber bushings attached to 4% cable length→c1=1900N.s/m Rubbber bushings attached to 5% cable length→c1=1538N.s/m 

 

a 

 
b 

 
c 

Figure 7. (a) Diagram of percentage of PSD drop with c3 / c1 

in the first mode (spring-damper at 1% of cable length), (b) 

Diagram of percentage of PSD decrease with c3 / c1 in the 

second mode (spring-damper at 3% of length) Cable), (c) 

Diagram of PSD reduction percentage with c3 / c1 in the third 

mode (spring-damper at 5% cable length) 

4. CONCLUSION 

In this research, the impact of linear viscous dampers and 

spring-dampers on decreasing the vibrations of cables, as well 

as the interaction of these dampers with each other, was 

studied. Based on the investigation, the subsequent results can 

be obtained. 

Although the induced damping because of the connection of the 

damper to the end of the cable is minute, owing to the relatively 

low intrinsic damping of the cable itself, this low damping can 

further restrict the phenomenon of resonance in the cable. As a 

result, the amplitude and vibration energy of the cable is 

noticeably reduced. 

If the cable understudy has an insignificant curvature and the 

amplitude of vibrations is moderate, the nonlinear behavior of 

the cable can be neglected. 

In the case where two viscous dampers or two damper-

springers are connected to the cable and the attachment point 

of these dampers is near enough to the end of the cable, the 

interaction of the dampers with each other is negligible. As a 

result, a complete pachecco diagram can still be employed to 

design them. 

If the damping coefficient of the third damper is less than its 

optimal value, this third damper will further decrease 

vibrations in the cable. But the resulting damping ratio is less 

than its maximum value. 

In case the damping coefficient of the third damper is greater 

than its optimum value, this damper may decrease the vibration 

of the cable. But, by the exceeding of the third damping 

coefficient of a known value, the total damping ratio decreases 

compared to the case where only two damper-springs are joined 

to the cable. That is, by extra increasing the damping coefficient 

of viscous dampers, its effect on reducing cable vibration 

becomes negative. 
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The results of this study can be used to design the required 

dampers to reduce the vibrations of bridge cables to the extent 

needed. Although cable structures and suspension bridges are 

not yet quite popular in Iran, these structures are immediately 

opening their way in the world owing to various advantages 

such as high lightness. 

Furthermore, as mentioned, linear viscosity dampers can 

produce optimal damping only in one particular vibration mode, 

and in other vibration modes, they are harder or softer than 

their optimal peer. Thus, to obtain maximum damping in several 

modes, non-linear dampers must be used. Hence, for further 

research, the nonlinearity of the damper can be factored in. 
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