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ABSTRACT

Human-dominated landscapes, encompassing terrestrial, freshwater, and urban ecosystems, are increasingly vulnerable to abrupt and
potentially irreversible changes known as tipping points, driven by anthropogenic pressures such as climate change, habitat fragmentation,
and pollution. These tipping points represent critical thresholds where gradual stressors precipitate nonlinear shifts in ecosystem states, often
leading to degraded functionality and loss of biodiversity. Early warning signals (EWS) offer a promising approach to anticipate such
transitions, enabling proactive management. This narrative review synthesizes recent advancements in EWS detection across diverse
ecosystems, emphasizing the unification of indicators that transcend traditional boundaries. Drawing from peer-reviewed literature published
between 2019 and 2025, we examine generic EWS based on critical slowing down, such as increased autocorrelation and variance, alongside
system-specific metrics like spatial patterns and trait variability. In terrestrial systems, remote sensing reveals resilience losses in forests and
drylands through vegetation indices. Freshwater ecosystems, particularly lakes, demonstrate mixed EWS reliability due to data limitations and
non-bifurcation shifts. Urban environments, as highly modified human-dominated spaces, exhibit social-ecological tipping dynamics, with EWS
incorporating socio-economic factors like polarization and displacement. By integrating these cross-ecosystem insights, we highlight
commonalities in EWS performance, such as the benefits of multivariate and machine learning approaches, while addressing challenges like
noise, seasonality, and cascading effects. This unification fosters a holistic framework for monitoring and mitigating tipping risks in
interconnected landscapes, underscoring the need for enhanced data integration and adaptive governance to enhance ecosystem resilience in
the Anthropocene.
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anthropogenic drivers trigger abrupt, potentially irreversible
shifts (Wang et al, 2025). These regime shifts often lead to
substantial declines in ecosystem services, loss of biodiversity,
and increased susceptibility to further disturbances (Lenton et
INTRODUCTION al., 2019). For example, the collapse of coral reef systems under

The Anthropocene epoch is increasingly recognized as a period ocean warming and acidification or the transformation of

in which human activities have become the dominant force grasslands into desertified landscapes illustrates how relatively

shaping Earth’s systems. Current estimates indicate that over
75% of the planet’s ice-free land surface has been modified by
humans through agriculture, urbanization, infrastructure
development, and other land-use changes (Lenton et al., 2024).
These human-dominated landscapes—ranging from intensive
agricultural fields and managed forests to sprawling urban
centers and engineered waterways—are not only altered
physically but are also subject to cascading ecological and
biogeochemical impacts. Such landscapes face mounting
pressures from climate change, resource extraction, and
intensifying land-use practices, which collectively threaten the
stability and resilience of natural systems.

Under these compounded pressures, ecosystems can be pushed
toward critical thresholds, commonly referred to as tipping
points. Tipping points represent nonlinear transitions in system
states, where incremental changes in environmental or

small changes in stressors can precipitate large ecological
consequences.

From a theoretical standpoint, tipping points are grounded in
dynamical systems theory, where they correspond to
bifurcations—qualitative changes in system behavior that alter
stability landscapes (Krishnamurthy et al, 2020). Different
types of bifurcations, including fold, Hopf, and transcritical,
describe how ecosystems can lose resilience and move toward
alternative stable states. In human-dominated systems, these
processes are further amplified by feedback loops linking
ecological and anthropogenic drivers. For instance,
deforestation in tropical forests can exacerbate regional
droughts, while urban expansion increases impervious surfaces,
elevating flood risks in watersheds (Armstrong McKay et al.,
2022). The consequences of such shifts are often global in scope:
Amazon rainforest dieback could release enormous carbon
stores, accelerating climate change (Rocha, 2022), while
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eutrophication in freshwater lakes can shift clear-water systems
to turbid, algal-dominated states, degrading water quality and
fisheries (O’'Brien et al., 2023).

Given the potentially irreversible consequences of tipping
points, there is an urgent need to anticipate these shifts before
they occur. Early warning signals (EWS) offer a promising
approach by detecting changes in system dynamics that precede
critical transitions. EWS are grounded in the phenomenon of
critical slowing down (CSD), whereby systems near thresholds
exhibit slower recovery from perturbations, detectable as
increases in temporal autocorrelation, variance, or spatial
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correlations (Nijp et al, 2019). While these indicators were
initially developed in simplified mathematical models, their
application has increasingly extended to complex, real-world
datasets, including ecological time series, remote sensing
products, and network analyses (Dakos et al, 2019). Despite
these advances, most EWS research has remained ecosystem-
specific, limiting cross-comparison and integration across
terrestrial, freshwater, and urban systems, even though these
systems often share common human pressures (Karavellas et
al,, 2020).
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Figure 1. Conceptual Framework of Tipping Points Across Ecosystems

This review aims to bridge this gap by synthesizing EWS
applications across diverse human-dominated ecosystems,
highlighting indicators that capture generic dynamical
signatures of approaching tipping points. Specifically, our
objectives are threefold: (1) to outline the conceptual
framework of tipping points and generic EWS applicable to
human-modified landscapes; (2) to examine ecosystem-specific
applications, identifying both methodological strengths and
limitations; and (3) to propose a cross-ecosystem unification of
indicators to support integrated monitoring and management
strategies. By focusing on studies published between 2019 and
2025, we emphasize recent methodological innovations,
including machine learning and network-based approaches,
that enhance the detection and prediction of critical transitions.
Such integrative strategies are crucial for informing adaptive
policy and conservation efforts in an era of rapid environmental
change.

The concept of environmental tipping points in human-dominated
landscapes
Environmental tipping points are critical thresholds in

dynamical systems where incremental changes in drivers

trigger abrupt, qualitative shifts in system state. These shifts
often arise when positive feedbacks outweigh stabilizing
negative feedbacks, leading to sudden transitions that may be
difficult or impossible to reverse (Wang et al., 2025). In human-
dominated landscapes, anthropogenic pressures act as primary
drivers that erode ecological resilience—the capacity of a
system to absorb disturbances while maintaining essential
functions and processes (Ibarra et al.,, 2022). For instance, land
conversion for agriculture, infrastructure expansion, and urban
development fragments habitats, diminishes ecological
connectivity, and amplifies vulnerability to climate stressors
such as droughts, heatwaves, or extreme precipitation events
(Lenton et al., 2024).

From a dynamical systems perspective, tipping points emerge
from specific types of bifurcations. Fold bifurcations produce
hysteresis, meaning that returning to a previous state requires
reversing drivers beyond the original threshold (e.g,
desertification of drylands following prolonged land
degradation). Hopf bifurcations induce oscillatory dynamics, as
seen in predator-prey systems destabilized by overharvesting
or habitat alterations. Transcritical bifurcations enable
exchanges between system states without hysteresis, reflecting



Rinaldi et al.

World ] Environ Biosci, 2025, 14, 2: 72-79

gradual yet structurally significant transitions (Krishnamurthy
et al, 2020). In addition to these classic bifurcations, human-
dominated systems introduce complexities such as rate-
induced tipping, where the pace of change exceeds a system’s
capacity to adapt, or noise-induced tipping, where stochastic
perturbations—like extreme weather or disease outbreaks—
push systems past thresholds (Xu et al., 2020). Cascading effects
further amplify risks: tipping in one subsystem, such as
permafrost thaw releasing methane, can trigger downstream or
teleconnected systems, leading to broader ecological or socio-
economic consequences (Bury et al., 2021).

Across ecosystems, tipping points manifest in diverse ways. In
terrestrial landscapes, regime shifts include transitions from
forests to savannas or from grasslands to deserts, often driven
by deforestation, land degradation, and warming (Rocha, 2022).
Freshwater systems face eutrophication, salinization, and
altered trophic structures, which compromise water quality and
fisheries (O’Brien et al, 2023). Urban ecosystems, as hybrid
social-ecological systems, are particularly susceptible to tipping
in socio-economic dimensions—for example, flood risks can
precipitate housing market collapses, and social polarization
can impede collective action toward green transitions
(Dabrowska et al, 2024). Despite variability in responses,
human activities often homogenize drivers across these
systems, such as nutrient loading, pollution, and the spread of
invasive species; yet the outcomes are mediated by system-
specific properties like spatial heterogeneity, connectivity, and
network topology (Lenton et al.,, 2019).

Crucially, tipping points operate across multiple scales: local
disturbances can propagate regionally or even globally,
exemplified by food system disruptions resulting from regional
droughts or market shocks (O’Brien et al, 2023). This
interconnectedness highlights the importance of developing
unified early warning signals (EWS) that integrate both
biophysical and socio-economic dimensions, enabling proactive
management of human-dominated landscapes before critical
thresholds are crossed (Dipalma et al., 2022; ilhan et al.,, 2022;
Sugimori et al.,, 2022; Uzun & Karatas, 2022; Vogel et al., 2023;
Weerasinghe et al., 2023).

Generic early warning signals for tipping points

Generic early warning signals (EWS) exploit universal
dynamical signatures that emerge as systems approach tipping
points. Central among these is critical slowing down (CSD),
where the system’s dominant eigenvalues approach zero,
causing slower recovery from perturbations and heightened
sensitivity to disturbances (Nijp et al, 2019). Key temporal
indicators of CSD include increasing lag-1 autocorrelation
(AR(1)), variance, and skewness, all detectable in time-series
data (Krishnamurthy et al, 2020). Spatial EWS complement
these measures, capturing changes in heterogeneous
landscapes through metrics like Moran’s [ (spatial
autocorrelation) and the coefficient of variation (Pavithran et

Table 1. Summary of Early Warning Signals by Ecosystem

al.,, 2025).

Recent methodological advancements emphasize multivariate
approaches, which combine multiple metrics to improve
reliability in complex systems (Dakos et al., 2019). Machine
learning techniques, particularly deep learning architectures
like CNN-LSTM, have shown promise in detecting EWS across
different bifurcation types. By learning subtle, high-dimensional
patterns in time-series data, these models can outperform
traditional indicators, successfully predicting tipping in
empirical paleo-climate and ecological datasets (Li &
Convertino, 2025).

Despite these advances, several challenges remain. EWS
typically assume gradual forcing and low stochasticity,
conditions often violated in human-dominated systems
subjected to rapid anthropogenic changes or extreme events
(Xu et al, 2020). False positives can arise from non-tipping
fluctuations, while false negatives occur in rate-induced tipping,
where changes outpace the system’s ability to manifest CSD
(Boulton et al, 2022). To address these issues, composite
indices aggregate multiple signals, enhancing detection
reliability in noisy, multi-stressor environments (Boers &
Rypdal, 2021).

In cross-ecosystem applications, generic EWS provide a
foundation for unification. CSD manifests similarly across
diverse domains—for instance, increasing variance is observed
in vegetation indices (terrestrial), plankton abundance
(freshwater), and urban heat metrics (Ditlevsen & Ditlevsen,
2023). Nevertheless, system-specific adaptations remain
essential, including adjustments for seasonality, network
structure, and socio-ecological interactions, to improve
interpretability and predictive power (Flores et al., 2024).

Early warning signals in terrestrial ecosystems

Terrestrial ecosystems in human-dominated landscapes—such
as forests, drylands, and agricultural regions—are highly
susceptible to tipping points like deforestation-induced dieback
or desertification (Rocha, 2022). Here, EWS leverage remote
sensing technologies to monitor resilience at large scales.
Metrics such as vegetation optical depth (VOD) and the
normalized difference vegetation index (NDVI) provide insights
into vegetation health and stability (Rocha, 2022).

In tropical forests, notably the Amazon, increases in AR(1) and
variance of VOD signal declining resilience, often linked to
droughts and fire feedbacks (Rocha, 2022). Satellite-based
studies since the 2000s reveal heterogeneous declines in
resilience, with the strongest signals in areas heavily impacted
by human activity. Spatial EWS, including measures of
connectedness and patchiness, are particularly informative in
drylands, where vegetation patterns reflect ecosystem
vulnerability (Rocha, 2022; van Westen et al, 2024). Boreal
forests exhibit mixed results, limited by spatial resolution and
temporal coverage of VOD datasets (Rocha, 2022).

Ecosystem Key T_l pping Generic EWS Metrics SySten_l-Speaﬁc Data Sources / Methods Limitations / Caveats
Points Indicators
Deforestation, AR(1), variance, NDVI, Vegetation Optical Remote sensing (satellite), Cloud cover, short time series,
Terrestrial desertification, skewness, critical Depth (VOD), spatial ecological time series, seasonality, multiple stressors
forest dieback slowing down (CSD) patchiness network analysis (fire, pests)

Freshwater Eutrophication,

AR(1), variance, Plankton trait variability,

Lake and river Data gaps in rivers/wetlands,
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algal blooms,
salinization, trophic

skewness, composite
indices

spatial heterogeneity,
water chemistry

monitoring, mesocosm
experiments,

stepwise shifts vs. bifurcations,
high noise, short-duration datasets

collapse paleoecological data

Heatwaves, i Social metrics (trust, . . Heterogeneous noise, rapid
. AR(1), variance, K ( Socio-economic datasets, K .g P X
infrastructure cooperation, A . discontinuous changes, socio-

Urban ) . network L coupled socio-ecological . . )

failure, social . polarization), urban heat economic complexity, cascading

K . autocorrelation . models, sensor networks

instability metrics effects

Machine learning enhances terrestrial EWS detection. CNN-
LSTM models trained on simulated phase transitions generalize
to real-world vegetation-water systems, successfully identifying
critical slowing down in desertification  scenarios
(Krishnamurthy et al., 2020). Network-based approaches assess
spatial EWS in complex topologies, with metrics like coefficient
of variation and skewness outperforming simpler measures in
heterogeneous landscapes (Pavithran et al, 2025). Key
challenges include data gaps due to cloud cover, short time-
series, and confounding influences of seasonality or multiple
stressors such as pests and fires, which necessitate detrending
and multivariate analyses (Stelzer et al, 2021). Overall,
terrestrial EWS emphasize spatially explicit metrics as essential
tools for early intervention in human-altered landscapes
(Constantin et al.,, 2022; Mojsak et al., 2022; Essah et al., 2024;
Frost et al, 2024; Kajanova & Badrov, 2024; Lee & Ferreira,
2024; Rosellini et al., 2024; Umarova et al., 2024).

Early warning signals in freshwater ecosystems

Freshwater ecosystems, heavily modified by dams, pollution,
nutrient loading, and water extraction, are prone to tipping
points such as regime shifts from macrophyte- to algae-
dominated lakes or river salinization (O’Brien et al.,, 2023). An
evidence synthesis of 219 studies highlights both knowledge
gaps and the dominance of research focused on lakes and
chemical drivers (O’Brien et al.,, 2023).

EWS performance in freshwater systems is mixed. In empirical
lake datasets, univariate indicators like variance succeed in
detecting approaching transitions in less than 50% of cases,
limited by non-critical shifts (e.g., abrupt stepwise changes) and
data preprocessing sensitivities (Karavellas et al, 2020).
Multivariate EWS generally perform better, but machine
learning approaches such as EWSNet are still challenged by high
false positive rates (Karavellas et al, 2020). Controlled
experiments and mesocosm studies help bridge theory and
application, validating indicators like AR(1) under gradual
forcing, though real-world complexity reduces reliability
(Ibarra et al., 2022). Notably, rate-induced tipping, where rapid
environmental changes outpace bifurcation responses, can still
produce detectable signals, with autocorrelation remaining one
of the most robust indicators (Boulton et al., 2022).

Lotic (flowing water) systems are less studied compared to
lentic (standing water) environments, though paleoecological
evidence reveals long-term thresholds. Short-duration modern
studies often limit the application of EWS (O’Brien et al., 2023).
Trait variability (e.g., plankton size distributions) and spatial
pattern metrics emerge as unifying indicators that can improve
detection amid multiple interacting stressors (Brett & Rohani,
2020). The rarity of true critical transitions and the influence of
compounded anthropogenic pressures underscore the
importance of composite EWS, which integrate mechanistic
understanding with multiple signals to improve forecasts for
management and policy (Karavellas et al., 2020; O’Brien et al.,

75

2023).

Early warning signals in urban ecosystems

Urban ecosystems, as densely populated and highly engineered
human-dominated spaces, integrate both biophysical and socio-
economic tipping points. Examples include heatwave-induced
health crises, infrastructure failures from extreme flooding, and
cascading disruptions in energy or transport systems
(Dabrowska et al., 2024). In this context, EWS extend beyond
ecological indicators to incorporate social and economic
dynamics, such as political polarization, displacement, or
financial instability, often triggered or amplified by climate-
related stressors (O’Brien et al., 2023).

Negative social tipping processes—such as societal anomie
following extreme events or radicalization arising from policy
backlash—exhibit early warning behaviors analogous to
ecological systems. For instance, increasing autocorrelation in
social metrics (e.g., trust or cooperation indices) or contagion
patterns across networks can signal approaching instability
(O’Brien et al., 2023). These social dynamics often feedback into
ecological and planetary systems, creating cascading effects,
such as food insecurity leading to local conflicts, which in turn
exacerbate environmental pressures (O’Brien et al., 2023).
Positive tipping points in urban contexts provide potential
avenues for transformative change. For example, the adoption
of low-carbon technologies, such as electric vehicles, can exhibit
CSD in market shares, detectable as early warning signals
preceding rapid societal shifts toward sustainability (Lenton et
al., 2022). Deep learning approaches applied to coupled socio-
technical models can generalize across urban networks,
identifying emergent tipping points and projecting their
likelihood under multiple scenarios (Li & Convertino, 2025).
Challenges in urban EWS include high heterogeneous noise,
rapid and discontinuous changes, and complex interactions
across social, economic, and ecological subsystems. To address
these, node-selection methods optimize sentinel monitoring in
networks, improving the detection of emerging instabilities
(Boers et al, 2022). Integrating urban EWS with ecological
indicators—for example, using sentinel species to track urban
pollution—enables holistic assessments of system resilience
and cross-domain risk (Ditlevsen & Ditlevsen, 2023).

Unifying indicators
opportunities

Efforts to unify EWS across terrestrial, freshwater, and urban
systems reveal shared dynamical signatures, primarily critical
slowing down (CSD), which manifests in generic metrics such as
AR(1) autocorrelation and variance (Wang et al.,, 2025). Cross-
scale monitoring is increasingly feasible through remote
sensing, where analogous indicators track resilience across
domains—for instance, VOD in terrestrial vegetation, plankton
abundance in lakes, and urban heat metrics in cities (Karavellas
etal., 2020; Rocha, 2022).

across ecosystems: challenges and
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Machine learning provides a powerful unifying framework Pavithran et al., 2025).

(Alhussain et al., 2022; Balaji et al., 2022; Tsiganock et al., 2023; However, challenges persist. Ecosystem- and domain-specific
Delcea et al., 2024; Ribeiro et al., 2024; Sanlier & Yasan, 2024; noise—such as seasonal cycles in terrestrial and freshwater
Uneno et al., 2024). Deep learning models trained on a diversity systems or social variability in urban systems—can obscure
of bifurcation types can generalize across ecosystems, detecting signals, while cascading interactions may render isolated EWS
approaching tipping points and distinguishing tipping types insufficient to capture systemic risk (Bury et al, 2021; O’Brien
with greater lead time than traditional metrics (Li & Convertino, et al, 2023). Opportunities lie in composite and multivariate
2025). Similarly, network-based EWS, which quantify spatial approaches, which integrate multiple indicators, and data
patterns and interactions in complex topologies, bridge fusion, combining satellite, paleoecological, and socio-economic
ecological and urban systems by capturing heterogeneity datasets to provide holistic early warnings (Bury et al,, 2019;
common to human-dominated landscapes (Lenton et al., 2019; Dakos et al., 2019).

Table 2. Machine Learning and Multivariate Approaches for EWS Across Ecosystems
Performance / Predictive

Ecosystem Method Advantages Limitations / Challenges
Accuracy
High accuracy in simulated Requires long time series, sensitive
. CNN-LSTM, network- i . u. y i st . Captures complex spatial-temporal dut g ! ! . v
Terrestrial desertification and vegetation- to seasonality, computationally

based models patterns, generalizes across regions

water systems intensive
Handles multiple interacting
stressors, detects subtle multivariate

EWSNet, multivariate Moderate accuracy; improved over Short datasets, non-critical shifts,

Freshwater

indices univariate but still false positives signals noisy data, high false negative rate
Deep learning on socio-  Moderate to high in simulated Integrates social and ecological ~ Rapid, discontinuous changes; high
Urban ecological networks, networks; early detection of socio- indicators, detects network heterogeneity; limited real-world
composite EWS economic tipping contagion and cascading failures validation
This cross-ecosystem perspective supports a proactive arena for EWS application, with empirical evidence indicating
management framework, emphasizing adaptive strategies to inconsistent performance due to non-linear responses and data
anticipate and avert tipping points in interconnected human- constraints (Karavellas et al.,, 2020; O’Brien et al., 2023). Lakes,
dominated landscapes (Adeleke, 2022; Razhaeva et al, 2022; the most studied freshwater type, often exhibit regime shifts
Rojas et al., 2022; Sri et al.,, 2022; Al Abadie et al., 2023; Guzek without clear CSD, as trophic cascades and nutrient pulses
et al., 2023; Lee et al., 2023; Ncube et al,, 2023; Oran & Azer, induce stepwise changes rather than bifurcations (Xu et al,
2023; Simonyan et al., 2023; Ceylan et al., 2024; Maralov et al., 2020; Ibarra et al., 2022). This review's analysis of 219 studies
2024). By integrating generic indicators with system-specific underscores knowledge gaps in rivers and wetlands, where
adaptations, such a framework enhances resilience planning, hydrological alterations from dams and pollution amplify
policy design, and conservation interventions in the tipping risks but elude standard EWS (Stelzer et al, 2021;
Anthropocene (van Nes et al., 2019). O'Brien et al, 2023). Machine learning approaches, such as
EWSNet, show promise in handling these complexities by
RESULTS AND DISCUSSION identifying multivariate patterns, yet they struggle with false
negatives in noisy, short-term datasets (Bury et al, 2021;
The unification of tipping-point indicators across terrestrial, O'Brien et al, 2023). Urban ecosystems, as the epitome of
freshwater, and urban ecosystems represents a significant human-dominated landscapes, extend EWS beyond biophysical
advance in environmental science, as it bridges traditionally realms to include social tipping dynamics, such as polarization
isolated domains under the common lens of human domination or economic instability (Lenton et al, 2022; Dabrowska et al.,
(Lenton et al, 2019; Armstrong McKay et al, 2022). By 2024). Here, the unification is particularly novel, as EWS
synthesizing recent literature, this review demonstrates that incorporate metrics like network contagion, revealing how
generic EWS, such as those based on CSD, can be applied cross- climate stressors interact with socio-economic feedbacks to
ecosystematically, but their effectiveness is modulated by precipitate shifts, e.g., in heat vulnerability or resource access
system-specific attributes and anthropogenic influences (Bury (Bury et al, 2019; Dabrowska et al, 2024). However, urban
et al, 2021; Wang et al, 2025). In terrestrial systems, where heterogeneity—driven by rapid human interventions—poses
habitat fragmentation and climate stressors dominate, EWS like unique challenges, often rendering generic EWS insufficient
rising variance in VOD have proven reliable for detecting without hybrid socio-ecological models (Brett & Rohani, 2020;
resilience losses, particularly in vulnerable biomes like the O’Brien et al., 2023).
Amazon and boreal forests (Boulton et al., 2022; Lenton et al., Cross-ecosystem commonalities emerge in the form of shared
2024). However, the review highlights limitations in data dynamical behaviors, such as CSD manifesting in vegetation
resolution and the confounding effects of multiple drivers, indices (terrestrial), plankton variability (freshwater), and
which can obscure signals and lead to delayed warnings social metrics (urban) (O’'Brien et al.,, 2023; Dabrowska et al.,
(Krishnamurthy et al, 2020; Rocha, 2022). For instance, in 2024; Lenton et al, 2024). This supports the novelty of
drylands, spatial EWS such as increased patchiness offer unification, where machine learning leverages universal
complementary insights, but require integration with temporal bifurcation patterns to generalize EWS across domains (Bury et
metrics to avoid false positives from seasonal variability (Nijp et al, 2021; van Westen et al,, 2024; Li & Convertino, 2025). For
al., 2019; Pavithran et al., 2025). example, deep learning models trained on synthetic data have
In contrast, freshwater ecosystems present a more challenging successfully predicted tipping in empirical series from diverse
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systems, providing earlier and more accurate warnings than
univariate indicators (Bury et al., 2021; Ditlevsen & Ditlevsen,
2023). Composite EWS, combining autocorrelation, variance,
and skewness, further enhance robustness by mitigating noise
and seasonality common in human-altered environments
(Dakos et al, 2019; Brett & Rohani, 2020). Nevertheless,
challenges like rate-induced tipping—where fast anthropogenic
changes outpace CSD detection—underscore the need for rate-
sensitive modifications (Bury et al, 2019; Pavithran et al,
2025). Cascading effects, where tipping in one ecosystem
triggers another (e.g, terrestrial drought affecting freshwater
quality and urban water security), are understudied but critical,
as they amplify risks in interconnected landscapes (Bury et al.,
2021; Armstrong McKay et al., 2022; Boers et al., 2022).

The implications of this unification are multifaceted.
Scientifically, it fosters a holistic understanding of resilience in
the Anthropocene, where human activities homogenize drivers
across ecosystems (Lenton et al., 2019; Armstrong McKay et al.,
2022). Practically, it informs management by enabling
integrated monitoring systems, such as satellite-based
platforms that track cross-ecosystem signals for timely
interventions (Krishnamurthy et al., 2020; Lenton et al., 2024).
In terrestrial contexts, this could guide reforestation and fire
management to avert desertification (Boulton et al., 2022; Wang
et al., 2025). For freshwater, EWS-integrated nutrient controls
might prevent algal blooms, preserving biodiversity and
services (Xu et al, 2020; O'Brien et al, 2023). Urban
applications could promote positive tipping, like accelerating
low-carbon transitions through policy thresholds identified by
EWS (Lenton et al., 2022; O’Brien et al., 2023). However, ethical
and equity issues arise, particularly in urban and developing
regions, where EWS deployment must avoid exacerbating
vulnerabilities (Bury et al., 2019; Dabrowska et al, 2024).
Limitations of the reviewed literature include a bias toward
Northern Hemisphere systems and retrospective analyses, with
few studies addressing adaptive capacities or reversal
strategies post-tipping (Stelzer et al, 2021; Rocha, 2022).
Future EWS unification should incorporate evolutionary
perspectives, as species adaptation may alter tipping dynamics
(Dakos et al., 2019; Lenton et al., 2022).

By addressing these gaps, unified EWS can transform
environmental governance, shifting
anticipatory paradigms (Lenton et al, 2019; Brett & Rohani,
2020). This review's novelty lies in demonstrating that, despite
ecosystem differences, shared indicators offer a scalable toolkit
for mitigating tipping risks in human-dominated landscapes.

from reactive to

CONCLUSION

In conclusion, this cross-ecosystem review establishes that
unifying tipping-point indicators enhances the detection of EWS
in human-dominated landscapes, providing a novel framework
for anticipating abrupt changes. Key insights include the broad
applicability of CSD-based metrics, bolstered by machine
learning, across terrestrial, freshwater, and urban systems,
albeit with ecosystem-specific caveats. This unification not only
highlights common resilience losses but also underscores the
role of anthropogenic drivers in accelerating tipping,
emphasizing the urgency for integrated management.

Looking ahead, future directions should focus on real-time EWS
validation through global observatories and experiments to
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bridge theory and practice. Expanding data coverage to
underrepresented ecosystems, like tropical rivers and
megacities, via advanced remote sensing and citizen science, is
crucial. Developing adaptive, rate-sensitive models that account
for cascades and socio-economic factors will improve predictive
accuracy. Policy-wise, embedding unified EWS in frameworks
like the UN Sustainable Development Goals could facilitate
proactive interdisciplinary
efforts integrating ecology, data science, and social sciences will

resilience-building. Ultimately,

be pivotal to averting tipping points and sustaining ecosystems
in an increasingly human-altered world.
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