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ABSTRACT 
 

Human-dominated landscapes, encompassing terrestrial, freshwater, and urban ecosystems, are increasingly vulnerable to abrupt and 
potentially irreversible changes known as tipping points, driven by anthropogenic pressures such as climate change, habitat fragmentation, 
and pollution. These tipping points represent critical thresholds where gradual stressors precipitate nonlinear shifts in ecosystem states, often 
leading to degraded functionality and loss of biodiversity. Early warning signals (EWS) offer a promising approach to anticipate such 
transitions, enabling proactive management. This narrative review synthesizes recent advancements in EWS detection across diverse 
ecosystems, emphasizing the unification of indicators that transcend traditional boundaries. Drawing from peer-reviewed literature published 
between 2019 and 2025, we examine generic EWS based on critical slowing down, such as increased autocorrelation and variance, alongside 
system-specific metrics like spatial patterns and trait variability. In terrestrial systems, remote sensing reveals resilience losses in forests and 
drylands through vegetation indices. Freshwater ecosystems, particularly lakes, demonstrate mixed EWS reliability due to data limitations and 
non-bifurcation shifts. Urban environments, as highly modified human-dominated spaces, exhibit social-ecological tipping dynamics, with EWS 
incorporating socio-economic factors like polarization and displacement. By integrating these cross-ecosystem insights, we highlight 
commonalities in EWS performance, such as the benefits of multivariate and machine learning approaches, while addressing challenges like 
noise, seasonality, and cascading effects. This unification fosters a holistic framework for monitoring and mitigating tipping risks in 
interconnected landscapes, underscoring the need for enhanced data integration and adaptive governance to enhance ecosystem resilience in 
the Anthropocene. 
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INTRODUCTION 
 

The Anthropocene epoch is increasingly recognized as a period 

in which human activities have become the dominant force 

shaping Earth’s systems. Current estimates indicate that over 

75% of the planet’s ice-free land surface has been modified by 

humans through agriculture, urbanization, infrastructure 

development, and other land-use changes (Lenton et al., 2024). 

These human-dominated landscapes—ranging from intensive 

agricultural fields and managed forests to sprawling urban 

centers and engineered waterways—are not only altered 

physically but are also subject to cascading ecological and 

biogeochemical impacts. Such landscapes face mounting 

pressures from climate change, resource extraction, and 

intensifying land-use practices, which collectively threaten the 

stability and resilience of natural systems. 

Under these compounded pressures, ecosystems can be pushed 

toward critical thresholds, commonly referred to as tipping 

points. Tipping points represent nonlinear transitions in system 

states, where incremental changes in environmental or 

anthropogenic drivers trigger abrupt, potentially irreversible 

shifts (Wang et al., 2025). These regime shifts often lead to 

substantial declines in ecosystem services, loss of biodiversity, 

and increased susceptibility to further disturbances (Lenton et 

al., 2019). For example, the collapse of coral reef systems under 

ocean warming and acidification or the transformation of 

grasslands into desertified landscapes illustrates how relatively 

small changes in stressors can precipitate large ecological 

consequences. 

From a theoretical standpoint, tipping points are grounded in 

dynamical systems theory, where they correspond to 

bifurcations—qualitative changes in system behavior that alter 

stability landscapes (Krishnamurthy et al., 2020). Different 

types of bifurcations, including fold, Hopf, and transcritical, 

describe how ecosystems can lose resilience and move toward 

alternative stable states. In human-dominated systems, these 

processes are further amplified by feedback loops linking 

ecological and anthropogenic drivers. For instance, 

deforestation in tropical forests can exacerbate regional 

droughts, while urban expansion increases impervious surfaces, 

elevating flood risks in watersheds (Armstrong McKay et al., 

2022). The consequences of such shifts are often global in scope: 

Amazon rainforest dieback could release enormous carbon 

stores, accelerating climate change (Rocha, 2022), while 
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eutrophication in freshwater lakes can shift clear-water systems 

to turbid, algal-dominated states, degrading water quality and 

fisheries (O’Brien et al., 2023). 

Given the potentially irreversible consequences of tipping 

points, there is an urgent need to anticipate these shifts before 

they occur. Early warning signals (EWS) offer a promising 

approach by detecting changes in system dynamics that precede 

critical transitions. EWS are grounded in the phenomenon of 

critical slowing down (CSD), whereby systems near thresholds 

exhibit slower recovery from perturbations, detectable as 

increases in temporal autocorrelation, variance, or spatial 

correlations (Nijp et al., 2019). While these indicators were 

initially developed in simplified mathematical models, their 

application has increasingly extended to complex, real-world 

datasets, including ecological time series, remote sensing 

products, and network analyses (Dakos et al., 2019). Despite 

these advances, most EWS research has remained ecosystem-

specific, limiting cross-comparison and integration across 

terrestrial, freshwater, and urban systems, even though these 

systems often share common human pressures (Karavellas et 

al., 2020). 

 

 
Figure 1. Conceptual Framework of Tipping Points Across Ecosystems 

 

This review aims to bridge this gap by synthesizing EWS 

applications across diverse human-dominated ecosystems, 

highlighting indicators that capture generic dynamical 

signatures of approaching tipping points. Specifically, our 

objectives are threefold: (1) to outline the conceptual 

framework of tipping points and generic EWS applicable to 

human-modified landscapes; (2) to examine ecosystem-specific 

applications, identifying both methodological strengths and 

limitations; and (3) to propose a cross-ecosystem unification of 

indicators to support integrated monitoring and management 

strategies. By focusing on studies published between 2019 and 

2025, we emphasize recent methodological innovations, 

including machine learning and network-based approaches, 

that enhance the detection and prediction of critical transitions. 

Such integrative strategies are crucial for informing adaptive 

policy and conservation efforts in an era of rapid environmental 

change. 

The concept of environmental tipping points in human-dominated 

landscapes 

Environmental tipping points are critical thresholds in 

dynamical systems where incremental changes in drivers 

trigger abrupt, qualitative shifts in system state. These shifts 

often arise when positive feedbacks outweigh stabilizing 

negative feedbacks, leading to sudden transitions that may be 

difficult or impossible to reverse (Wang et al., 2025). In human-

dominated landscapes, anthropogenic pressures act as primary 

drivers that erode ecological resilience—the capacity of a 

system to absorb disturbances while maintaining essential 

functions and processes (Ibarra et al., 2022). For instance, land 

conversion for agriculture, infrastructure expansion, and urban 

development fragments habitats, diminishes ecological 

connectivity, and amplifies vulnerability to climate stressors 

such as droughts, heatwaves, or extreme precipitation events 

(Lenton et al., 2024). 

From a dynamical systems perspective, tipping points emerge 

from specific types of bifurcations. Fold bifurcations produce 

hysteresis, meaning that returning to a previous state requires 

reversing drivers beyond the original threshold (e.g., 

desertification of drylands following prolonged land 

degradation). Hopf bifurcations induce oscillatory dynamics, as 

seen in predator-prey systems destabilized by overharvesting 

or habitat alterations. Transcritical bifurcations enable 

exchanges between system states without hysteresis, reflecting 
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gradual yet structurally significant transitions (Krishnamurthy 

et al., 2020). In addition to these classic bifurcations, human-

dominated systems introduce complexities such as rate-

induced tipping, where the pace of change exceeds a system’s 

capacity to adapt, or noise-induced tipping, where stochastic 

perturbations—like extreme weather or disease outbreaks—

push systems past thresholds (Xu et al., 2020). Cascading effects 

further amplify risks: tipping in one subsystem, such as 

permafrost thaw releasing methane, can trigger downstream or 

teleconnected systems, leading to broader ecological or socio-

economic consequences (Bury et al., 2021). 

Across ecosystems, tipping points manifest in diverse ways. In 

terrestrial landscapes, regime shifts include transitions from 

forests to savannas or from grasslands to deserts, often driven 

by deforestation, land degradation, and warming (Rocha, 2022). 

Freshwater systems face eutrophication, salinization, and 

altered trophic structures, which compromise water quality and 

fisheries (O’Brien et al., 2023). Urban ecosystems, as hybrid 

social-ecological systems, are particularly susceptible to tipping 

in socio-economic dimensions—for example, flood risks can 

precipitate housing market collapses, and social polarization 

can impede collective action toward green transitions 

(Dabrowska et al., 2024). Despite variability in responses, 

human activities often homogenize drivers across these 

systems, such as nutrient loading, pollution, and the spread of 

invasive species; yet the outcomes are mediated by system-

specific properties like spatial heterogeneity, connectivity, and 

network topology (Lenton et al., 2019). 

Crucially, tipping points operate across multiple scales: local 

disturbances can propagate regionally or even globally, 

exemplified by food system disruptions resulting from regional 

droughts or market shocks (O’Brien et al., 2023). This 

interconnectedness highlights the importance of developing 

unified early warning signals (EWS) that integrate both 

biophysical and socio-economic dimensions, enabling proactive 

management of human-dominated landscapes before critical 

thresholds are crossed (Dipalma et al., 2022; İlhan et al., 2022; 

Sugimori et al., 2022; Uzun & Karataş, 2022; Vogel et al., 2023; 

Weerasinghe et al., 2023). 

Generic early warning signals for tipping points 

Generic early warning signals (EWS) exploit universal 

dynamical signatures that emerge as systems approach tipping 

points. Central among these is critical slowing down (CSD), 

where the system’s dominant eigenvalues approach zero, 

causing slower recovery from perturbations and heightened 

sensitivity to disturbances (Nijp et al., 2019). Key temporal 

indicators of CSD include increasing lag-1 autocorrelation 

(AR(1)), variance, and skewness, all detectable in time-series 

data (Krishnamurthy et al., 2020). Spatial EWS complement 

these measures, capturing changes in heterogeneous 

landscapes through metrics like Moran’s I (spatial 

autocorrelation) and the coefficient of variation (Pavithran et 

al., 2025). 

Recent methodological advancements emphasize multivariate 

approaches, which combine multiple metrics to improve 

reliability in complex systems (Dakos et al., 2019). Machine 

learning techniques, particularly deep learning architectures 

like CNN-LSTM, have shown promise in detecting EWS across 

different bifurcation types. By learning subtle, high-dimensional 

patterns in time-series data, these models can outperform 

traditional indicators, successfully predicting tipping in 

empirical paleo-climate and ecological datasets (Li & 

Convertino, 2025). 

Despite these advances, several challenges remain. EWS 

typically assume gradual forcing and low stochasticity, 

conditions often violated in human-dominated systems 

subjected to rapid anthropogenic changes or extreme events 

(Xu et al., 2020). False positives can arise from non-tipping 

fluctuations, while false negatives occur in rate-induced tipping, 

where changes outpace the system’s ability to manifest CSD 

(Boulton et al., 2022). To address these issues, composite 

indices aggregate multiple signals, enhancing detection 

reliability in noisy, multi-stressor environments (Boers & 

Rypdal, 2021). 

In cross-ecosystem applications, generic EWS provide a 

foundation for unification. CSD manifests similarly across 

diverse domains—for instance, increasing variance is observed 

in vegetation indices (terrestrial), plankton abundance 

(freshwater), and urban heat metrics (Ditlevsen & Ditlevsen, 

2023). Nevertheless, system-specific adaptations remain 

essential, including adjustments for seasonality, network 

structure, and socio-ecological interactions, to improve 

interpretability and predictive power (Flores et al., 2024). 

Early warning signals in terrestrial ecosystems 

Terrestrial ecosystems in human-dominated landscapes—such 

as forests, drylands, and agricultural regions—are highly 

susceptible to tipping points like deforestation-induced dieback 

or desertification (Rocha, 2022). Here, EWS leverage remote 

sensing technologies to monitor resilience at large scales. 

Metrics such as vegetation optical depth (VOD) and the 

normalized difference vegetation index (NDVI) provide insights 

into vegetation health and stability (Rocha, 2022). 

In tropical forests, notably the Amazon, increases in AR(1) and 

variance of VOD signal declining resilience, often linked to 

droughts and fire feedbacks (Rocha, 2022). Satellite-based 

studies since the 2000s reveal heterogeneous declines in 

resilience, with the strongest signals in areas heavily impacted 

by human activity. Spatial EWS, including measures of 

connectedness and patchiness, are particularly informative in 

drylands, where vegetation patterns reflect ecosystem 

vulnerability (Rocha, 2022; van Westen et al., 2024). Boreal 

forests exhibit mixed results, limited by spatial resolution and 

temporal coverage of VOD datasets (Rocha, 2022).

Table 1. Summary of Early Warning Signals by Ecosystem 

Ecosystem 
Key Tipping 

Points 
Generic EWS Metrics 

System-Specific 

Indicators 
Data Sources / Methods Limitations / Caveats 

Terrestrial 

Deforestation, 

desertification, 

forest dieback 

AR(1), variance, 

skewness, critical 

slowing down (CSD) 

NDVI, Vegetation Optical 

Depth (VOD), spatial 

patchiness 

Remote sensing (satellite), 

ecological time series, 

network analysis 

Cloud cover, short time series, 

seasonality, multiple stressors 

(fire, pests) 

Freshwater Eutrophication, AR(1), variance, Plankton trait variability, Lake and river Data gaps in rivers/wetlands, 
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algal blooms, 

salinization, trophic 

collapse 

skewness, composite 

indices 

spatial heterogeneity, 

water chemistry 

monitoring, mesocosm 

experiments, 

paleoecological data 

stepwise shifts vs. bifurcations, 

high noise, short-duration datasets 

Urban 

Heatwaves, 

infrastructure 

failure, social 

instability 

AR(1), variance, 

network 

autocorrelation 

Social metrics (trust, 

cooperation, 

polarization), urban heat 

metrics 

Socio-economic datasets, 

coupled socio-ecological 

models, sensor networks 

Heterogeneous noise, rapid 

discontinuous changes, socio-

economic complexity, cascading 

effects 

 

Machine learning enhances terrestrial EWS detection. CNN-

LSTM models trained on simulated phase transitions generalize 

to real-world vegetation-water systems, successfully identifying 

critical slowing down in desertification scenarios 

(Krishnamurthy et al., 2020). Network-based approaches assess 

spatial EWS in complex topologies, with metrics like coefficient 

of variation and skewness outperforming simpler measures in 

heterogeneous landscapes (Pavithran et al., 2025). Key 

challenges include data gaps due to cloud cover, short time-

series, and confounding influences of seasonality or multiple 

stressors such as pests and fires, which necessitate detrending 

and multivariate analyses (Stelzer et al., 2021). Overall, 

terrestrial EWS emphasize spatially explicit metrics as essential 

tools for early intervention in human-altered landscapes 

(Constantin et al., 2022; Mojsak et al., 2022; Essah et al., 2024; 

Frost et al., 2024; Kajanova & Badrov, 2024; Lee & Ferreira, 

2024; Rosellini et al., 2024; Umarova et al., 2024). 

Early warning signals in freshwater ecosystems 

Freshwater ecosystems, heavily modified by dams, pollution, 

nutrient loading, and water extraction, are prone to tipping 

points such as regime shifts from macrophyte- to algae-

dominated lakes or river salinization (O’Brien et al., 2023). An 

evidence synthesis of 219 studies highlights both knowledge 

gaps and the dominance of research focused on lakes and 

chemical drivers (O’Brien et al., 2023). 

EWS performance in freshwater systems is mixed. In empirical 

lake datasets, univariate indicators like variance succeed in 

detecting approaching transitions in less than 50% of cases, 

limited by non-critical shifts (e.g., abrupt stepwise changes) and 

data preprocessing sensitivities (Karavellas et al., 2020). 

Multivariate EWS generally perform better, but machine 

learning approaches such as EWSNet are still challenged by high 

false positive rates (Karavellas et al., 2020). Controlled 

experiments and mesocosm studies help bridge theory and 

application, validating indicators like AR(1) under gradual 

forcing, though real-world complexity reduces reliability 

(Ibarra et al., 2022). Notably, rate-induced tipping, where rapid 

environmental changes outpace bifurcation responses, can still 

produce detectable signals, with autocorrelation remaining one 

of the most robust indicators (Boulton et al., 2022). 

Lotic (flowing water) systems are less studied compared to 

lentic (standing water) environments, though paleoecological 

evidence reveals long-term thresholds. Short-duration modern 

studies often limit the application of EWS (O’Brien et al., 2023). 

Trait variability (e.g., plankton size distributions) and spatial 

pattern metrics emerge as unifying indicators that can improve 

detection amid multiple interacting stressors (Brett & Rohani, 

2020). The rarity of true critical transitions and the influence of 

compounded anthropogenic pressures underscore the 

importance of composite EWS, which integrate mechanistic 

understanding with multiple signals to improve forecasts for 

management and policy (Karavellas et al., 2020; O’Brien et al., 

2023). 

Early warning signals in urban ecosystems 

Urban ecosystems, as densely populated and highly engineered 

human-dominated spaces, integrate both biophysical and socio-

economic tipping points. Examples include heatwave-induced 

health crises, infrastructure failures from extreme flooding, and 

cascading disruptions in energy or transport systems 

(Dabrowska et al., 2024). In this context, EWS extend beyond 

ecological indicators to incorporate social and economic 

dynamics, such as political polarization, displacement, or 

financial instability, often triggered or amplified by climate-

related stressors (O’Brien et al., 2023). 

Negative social tipping processes—such as societal anomie 

following extreme events or radicalization arising from policy 

backlash—exhibit early warning behaviors analogous to 

ecological systems. For instance, increasing autocorrelation in 

social metrics (e.g., trust or cooperation indices) or contagion 

patterns across networks can signal approaching instability 

(O’Brien et al., 2023). These social dynamics often feedback into 

ecological and planetary systems, creating cascading effects, 

such as food insecurity leading to local conflicts, which in turn 

exacerbate environmental pressures (O’Brien et al., 2023). 

Positive tipping points in urban contexts provide potential 

avenues for transformative change. For example, the adoption 

of low-carbon technologies, such as electric vehicles, can exhibit 

CSD in market shares, detectable as early warning signals 

preceding rapid societal shifts toward sustainability (Lenton et 

al., 2022). Deep learning approaches applied to coupled socio-

technical models can generalize across urban networks, 

identifying emergent tipping points and projecting their 

likelihood under multiple scenarios (Li & Convertino, 2025). 

Challenges in urban EWS include high heterogeneous noise, 

rapid and discontinuous changes, and complex interactions 

across social, economic, and ecological subsystems. To address 

these, node-selection methods optimize sentinel monitoring in 

networks, improving the detection of emerging instabilities 

(Boers et al., 2022). Integrating urban EWS with ecological 

indicators—for example, using sentinel species to track urban 

pollution—enables holistic assessments of system resilience 

and cross-domain risk (Ditlevsen & Ditlevsen, 2023). 

Unifying indicators across ecosystems: challenges and 

opportunities 

Efforts to unify EWS across terrestrial, freshwater, and urban 

systems reveal shared dynamical signatures, primarily critical 

slowing down (CSD), which manifests in generic metrics such as 

AR(1) autocorrelation and variance (Wang et al., 2025). Cross-

scale monitoring is increasingly feasible through remote 

sensing, where analogous indicators track resilience across 

domains—for instance, VOD in terrestrial vegetation, plankton 

abundance in lakes, and urban heat metrics in cities (Karavellas 

et al., 2020; Rocha, 2022). 
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Machine learning provides a powerful unifying framework 

(Alhussain et al., 2022; Balaji et al., 2022; Tsiganock et al., 2023; 

Delcea et al., 2024; Ribeiro et al., 2024; Sanlier & Yasan, 2024; 

Uneno et al., 2024). Deep learning models trained on a diversity 

of bifurcation types can generalize across ecosystems, detecting 

approaching tipping points and distinguishing tipping types 

with greater lead time than traditional metrics (Li & Convertino, 

2025). Similarly, network-based EWS, which quantify spatial 

patterns and interactions in complex topologies, bridge 

ecological and urban systems by capturing heterogeneity 

common to human-dominated landscapes (Lenton et al., 2019; 

Pavithran et al., 2025). 

However, challenges persist. Ecosystem- and domain-specific 

noise—such as seasonal cycles in terrestrial and freshwater 

systems or social variability in urban systems—can obscure 

signals, while cascading interactions may render isolated EWS 

insufficient to capture systemic risk (Bury et al., 2021; O’Brien 

et al., 2023). Opportunities lie in composite and multivariate 

approaches, which integrate multiple indicators, and data 

fusion, combining satellite, paleoecological, and socio-economic 

datasets to provide holistic early warnings (Bury et al., 2019; 

Dakos et al., 2019).
 

Table 2. Machine Learning and Multivariate Approaches for EWS Across Ecosystems 

Ecosystem Method 
Performance / Predictive 

Accuracy 
Advantages Limitations / Challenges 

Terrestrial 
CNN-LSTM, network-

based models 

High accuracy in simulated 

desertification and vegetation-

water systems 

Captures complex spatial-temporal 

patterns, generalizes across regions 

Requires long time series, sensitive 

to seasonality, computationally 

intensive 

Freshwater 
EWSNet, multivariate 

indices 

Moderate accuracy; improved over 

univariate but still false positives 

Handles multiple interacting 

stressors, detects subtle multivariate 

signals 

Short datasets, non-critical shifts, 

noisy data, high false negative rate 

Urban 

Deep learning on socio-

ecological networks, 

composite EWS 

Moderate to high in simulated 

networks; early detection of socio-

economic tipping 

Integrates social and ecological 

indicators, detects network 

contagion and cascading failures 

Rapid, discontinuous changes; high 

heterogeneity; limited real-world 

validation 

 

This cross-ecosystem perspective supports a proactive 

management framework, emphasizing adaptive strategies to 

anticipate and avert tipping points in interconnected human-

dominated landscapes (Adeleke, 2022; Razhaeva et al., 2022; 

Rojas et al., 2022; Sri et al., 2022; Al Abadie et al., 2023; Guzek 

et al., 2023; Lee et al., 2023; Ncube et al., 2023; Oran & Azer, 

2023; Simonyan et al., 2023; Ceylan et al., 2024; Maralov et al., 

2024). By integrating generic indicators with system-specific 

adaptations, such a framework enhances resilience planning, 

policy design, and conservation interventions in the 

Anthropocene (van Nes et al., 2019). 

RESULTS AND DISCUSSION  

The unification of tipping-point indicators across terrestrial, 

freshwater, and urban ecosystems represents a significant 

advance in environmental science, as it bridges traditionally 

isolated domains under the common lens of human domination 

(Lenton et al., 2019; Armstrong McKay et al., 2022). By 

synthesizing recent literature, this review demonstrates that 

generic EWS, such as those based on CSD, can be applied cross-

ecosystematically, but their effectiveness is modulated by 

system-specific attributes and anthropogenic influences (Bury 

et al., 2021; Wang et al., 2025). In terrestrial systems, where 

habitat fragmentation and climate stressors dominate, EWS like 

rising variance in VOD have proven reliable for detecting 

resilience losses, particularly in vulnerable biomes like the 

Amazon and boreal forests (Boulton et al., 2022; Lenton et al., 

2024). However, the review highlights limitations in data 

resolution and the confounding effects of multiple drivers, 

which can obscure signals and lead to delayed warnings 

(Krishnamurthy et al., 2020; Rocha, 2022). For instance, in 

drylands, spatial EWS such as increased patchiness offer 

complementary insights, but require integration with temporal 

metrics to avoid false positives from seasonal variability (Nijp et 

al., 2019; Pavithran et al., 2025). 

In contrast, freshwater ecosystems present a more challenging 

arena for EWS application, with empirical evidence indicating 

inconsistent performance due to non-linear responses and data 

constraints (Karavellas et al., 2020; O’Brien et al., 2023). Lakes, 

the most studied freshwater type, often exhibit regime shifts 

without clear CSD, as trophic cascades and nutrient pulses 

induce stepwise changes rather than bifurcations (Xu et al., 

2020; Ibarra et al., 2022). This review's analysis of 219 studies 

underscores knowledge gaps in rivers and wetlands, where 

hydrological alterations from dams and pollution amplify 

tipping risks but elude standard EWS (Stelzer et al., 2021; 

O’Brien et al., 2023). Machine learning approaches, such as 

EWSNet, show promise in handling these complexities by 

identifying multivariate patterns, yet they struggle with false 

negatives in noisy, short-term datasets (Bury et al., 2021; 

O’Brien et al., 2023). Urban ecosystems, as the epitome of 

human-dominated landscapes, extend EWS beyond biophysical 

realms to include social tipping dynamics, such as polarization 

or economic instability (Lenton et al., 2022; Dabrowska et al., 

2024). Here, the unification is particularly novel, as EWS 

incorporate metrics like network contagion, revealing how 

climate stressors interact with socio-economic feedbacks to 

precipitate shifts, e.g., in heat vulnerability or resource access 

(Bury et al., 2019; Dabrowska et al., 2024). However, urban 

heterogeneity—driven by rapid human interventions—poses 

unique challenges, often rendering generic EWS insufficient 

without hybrid socio-ecological models (Brett & Rohani, 2020; 

O’Brien et al., 2023). 

Cross-ecosystem commonalities emerge in the form of shared 

dynamical behaviors, such as CSD manifesting in vegetation 

indices (terrestrial), plankton variability (freshwater), and 

social metrics (urban) (O’Brien et al., 2023; Dabrowska et al., 

2024; Lenton et al., 2024). This supports the novelty of 

unification, where machine learning leverages universal 

bifurcation patterns to generalize EWS across domains (Bury et 

al., 2021; van Westen et al., 2024; Li & Convertino, 2025). For 

example, deep learning models trained on synthetic data have 

successfully predicted tipping in empirical series from diverse 
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systems, providing earlier and more accurate warnings than 

univariate indicators (Bury et al., 2021; Ditlevsen & Ditlevsen, 

2023). Composite EWS, combining autocorrelation, variance, 

and skewness, further enhance robustness by mitigating noise 

and seasonality common in human-altered environments 

(Dakos et al., 2019; Brett & Rohani, 2020). Nevertheless, 

challenges like rate-induced tipping—where fast anthropogenic 

changes outpace CSD detection—underscore the need for rate-

sensitive modifications (Bury et al., 2019; Pavithran et al., 

2025). Cascading effects, where tipping in one ecosystem 

triggers another (e.g., terrestrial drought affecting freshwater 

quality and urban water security), are understudied but critical, 

as they amplify risks in interconnected landscapes (Bury et al., 

2021; Armstrong McKay et al., 2022; Boers et al., 2022). 

The implications of this unification are multifaceted. 

Scientifically, it fosters a holistic understanding of resilience in 

the Anthropocene, where human activities homogenize drivers 

across ecosystems (Lenton et al., 2019; Armstrong McKay et al., 

2022). Practically, it informs management by enabling 

integrated monitoring systems, such as satellite-based 

platforms that track cross-ecosystem signals for timely 

interventions (Krishnamurthy et al., 2020; Lenton et al., 2024). 

In terrestrial contexts, this could guide reforestation and fire 

management to avert desertification (Boulton et al., 2022; Wang 

et al., 2025). For freshwater, EWS-integrated nutrient controls 

might prevent algal blooms, preserving biodiversity and 

services (Xu et al., 2020; O’Brien et al., 2023). Urban 

applications could promote positive tipping, like accelerating 

low-carbon transitions through policy thresholds identified by 

EWS (Lenton et al., 2022; O’Brien et al., 2023). However, ethical 

and equity issues arise, particularly in urban and developing 

regions, where EWS deployment must avoid exacerbating 

vulnerabilities (Bury et al., 2019; Dabrowska et al., 2024). 

Limitations of the reviewed literature include a bias toward 

Northern Hemisphere systems and retrospective analyses, with 

few studies addressing adaptive capacities or reversal 

strategies post-tipping (Stelzer et al., 2021; Rocha, 2022). 

Future EWS unification should incorporate evolutionary 

perspectives, as species adaptation may alter tipping dynamics 

(Dakos et al., 2019; Lenton et al., 2022). 

By addressing these gaps, unified EWS can transform 

environmental governance, shifting from reactive to 

anticipatory paradigms (Lenton et al., 2019; Brett & Rohani, 

2020). This review's novelty lies in demonstrating that, despite 

ecosystem differences, shared indicators offer a scalable toolkit 

for mitigating tipping risks in human-dominated landscapes. 

CONCLUSION 

In conclusion, this cross-ecosystem review establishes that 

unifying tipping-point indicators enhances the detection of EWS 

in human-dominated landscapes, providing a novel framework 

for anticipating abrupt changes. Key insights include the broad 

applicability of CSD-based metrics, bolstered by machine 

learning, across terrestrial, freshwater, and urban systems, 

albeit with ecosystem-specific caveats. This unification not only 

highlights common resilience losses but also underscores the 

role of anthropogenic drivers in accelerating tipping, 

emphasizing the urgency for integrated management. 

Looking ahead, future directions should focus on real-time EWS 

validation through global observatories and experiments to 

bridge theory and practice. Expanding data coverage to 

underrepresented ecosystems, like tropical rivers and 

megacities, via advanced remote sensing and citizen science, is 

crucial. Developing adaptive, rate-sensitive models that account 

for cascades and socio-economic factors will improve predictive 

accuracy. Policy-wise, embedding unified EWS in frameworks 

like the UN Sustainable Development Goals could facilitate 

proactive resilience-building. Ultimately, interdisciplinary 

efforts integrating ecology, data science, and social sciences will 

be pivotal to averting tipping points and sustaining ecosystems 

in an increasingly human-altered world. 
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