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ABSTRACT 
 

River flow is an important parameter in hydrology, irrigation scheduling, groundwater pollution studies, and hydropower analysis. It 
depends on various climate and hydrologic factors, e.g. precipitation, temperature, river basin physiography, geological characteristics of the 
basin, etc. Although several factors may affect river flow quantity and quality during a certain period, it is difficult to account for all those 
variables in simulating/predicting river flow values due to the complex relations governing the hydrologic cycle in nature. Therefore, using 
simpler methods that can be used with fewer required input data would be necessary. A prediction task was implemented in the present 
study to obtain river flow values based on the previously recorded river flows using three machine learning approaches, namely, multi-
variate adaptive regression spline (MARS), boosted regression tree (BT), and random forest (RF). Data from three stations in Iowa stat 
(U.S.A) covering daily records of five years were utilized for developing the ML models. Based on the results, all three applied models could 
simulate the river flow values well, when the time lags of two successive days were introduced to feed the model. An analysis was also made 
for detecting the variations of the applied statistical indicators per test stage of k-fold testing data assignment. This analysis showed obvious 
variations of indicators among the test stages, revealing the necessity of adopting k-fold testing in the studied region. 
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INTRODUCTION 
 

Accurate prediction of streamflow records is very important in 

hydrology and water resources management and engineering, 

drought analysis (Edossa & Babel, 2011) ELGENDY (2022), 

environmental studies (Tennant, 1976), groundwater 

interactions (Gunduz & Aral, 2005) and river erosive capability 

(Kisi et al., 2012; Kaur et al., 2023). There are some methods 

for the prediction of river flow values such as time series 

models (e.g. ARMA), empirical models, and physics-based 

models. Among the empirical group, machine learning (ML) 

approaches' applications have been viable due to their 

flexibility and capability to map nonlinear relations of the 

hydrologic cycle (Karimi et al., 2016; Çora & Çora, 2022). 

Substantial studies have used various ML techniques for river 

flow prediction worldwide including the use of neural 

networks, genetic programming, neuro-fuzzy systems, support 

vector machine, etc (e.g. Han et al., 2007; Latt & Wittenberg, 

2014; Insom et al., 2015; Maroufpoor et al., 2020; Shiri et al., 

2021; Macharyulu et al., 2022; Shiri et al., 2022; Wegayehu & 

Muluneh, 2022; Bakhshi Ostadkalayeh, 2023; Terela & Strilets, 

2023). Some others have tried to introduce coupled wavelet-

ML techniques for flow predictions when data carry 

considerable noise and ML couldn't handle their simulations 

(e.g. Karimi et al., 2017; Dalkiliç & Hashimi, 2020; Jayavel & 

Sivagnanam, 2022; Yilmaz et al., 2022).  

Despite the broad use of ML techniques in this context, there is 

still empty room to work on it and improve the simulation 

knowledge due to the different nature of the rivers and flow 

time series at various locations under different 

climatic/hydrologic conditions. Nevertheless, as the works deal 

with time series, information captured from each series is an 

essential factor in modeling success because the capacities of 

various models in handling different data sets vary among 

them. Further, tackling those series with a specified data 

management strategy is an important issue because some 

extreme events might fall within a certain part of the available 

events and affect the prediction accuracy in both model 

building (training) and validation (testing) phases. Karimi et al. 

(2016), and Mashhour et al. (2023) argued that using the k-

fold testing mode for data assigning in the prediction of river 

flow values by ML might solve such difficulties considerably. 

Hence, a k-fold testing scenario for temporal assigning of ML 

techniques was adopted here to assess some methods for flow 

prediction.    

MATERIALS AND METHODS 

Study locations 

The Des Moines River, which spans approximately 845 km 

from its farthest headwaters, is a tributary of the Mississippi 

River located in the upper Midwest region, U.S.A. It is the 

largest river passing through the Iowa state with a basin area 

of about 38.340 km2. Beginning from southern Minnesota, the 

Des Moines River flows from northwest to southeast across the 

Iowa state, transitioning from the glaciated plains to the 

https://doi.org/10.51847/U72sgqfYRZ
https://creativecommons.org/licenses/by-nc-sa/4.0/


Shiri et al.                                                                                                           World J Environ Biosci, 2023, 12, 4: 33-39 

 

34 
 

unglaciated hills near the capital city of Des Moines. The river 

then continues to flow in a southeastern direction and drains 

into the Mississippi River. Three stations, namely, Des Moines 

River at Humboldt (station 1), Des Moines River at Fort Dodge 

(station 2), and Des Moines River near Stratford (station 3)  

have been constructed along the north reach of the river for 

continuous monitoring of river flow characteristics (Figure 1). 

 

 
Figure 1. Geographical positions of the stations 

 

Daily records of river flow consisting of 5-year patterns at all 

locations (2018 to 2023) were used, basic statistical 

characteristics for which have been listed in Table 1. The 

observed flow domains (differences between the maximum 

and minimum observed flow rate) for stations 1-3 were about, 

16700, 30000, and 37000 ft3/s, respectively. Among the three 

studied locations, station 3 presented the highest maximum 

river flow values during the study period. On the other hand, 

the standard deviation values of the stations were, 

respectively, 2048, 3603, and 4438  ft3/s for the same sites. 

This clearly shows the higher variance of the flow rates in the 

third location, although the coefficient of variation suggests the 

highest dimensionless variance values for station 2. The same 

trend can be seen for the skewness coefficient values. So, it 

might be stated, based on these observations, that variations 

around the average flow rate values and the magnitude of 

discrepancy from normal distribution are higher for the second 

station. As a first hypothesis, this might affect the modeling 

performance in this location and make the simulation process 

difficult. However, this should be accepted or rejected after 

analysis of the obtained results in the next sections. 

 

Table 1. Basic statistical characteristics of river flow time series 

 station Latitude Longitude Max(ft3/s) Min(ft3/s) Mean(ft3/s) SD(ft3/s) CV Skew 

station 1 
Des Moines River at 

Humboldt, IA 
42°43'10" 94°13'13" 16800 25.90 1481.98 2048.33 1.38 2.64 

station 2 
Des Moines River at 

Fort Dodge, IA 
42°30'30" 94°12'12" 30900 57.70 2518.18 3603.10 1.43 3.03 

station 3 
Des Moines River 

near Stratford, IA 
42°15'08.1" 93°59'50.88" 37100 85.70 3258.65 4438.28 1.36 2.74 

Note: Max, min, mean, SD, CV, and Skew show the maximum, minimum, average, standard deviation, coefficient of variation, and skewness coefficient, 

respectively.  

 

Applied models 

Multi-variate adaptive regression alpine (MARS) 

As a regression-based model, MARS (Friedman, 1991; 

Kryuchkova et al., 2022) technique applies the stepwise linear 

regression technique fundamentals. MARs have a high 

capability to identify and enhance the comprehension of 

complex interactions between the input and target parameters 

As a non-parametric model, it builds upon the linear regression 

model by incorporating flexibility. The general form of the 

MARS model Reads: 

f(X)= α0+ ∑ α0hn(X)

N

n=1

 (1) 

 

Where, the alpha (α) coefficients are computed by minimizing 

the residual errors and depend on weights (the variable 

importance) (Friedman & Roosen, 1995; Kisi & Parmar, 2016; 

Kisi et al., 2017; Shiri et al., 2020a).  

 

Random forest (RF) 
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Random Forest (RF) has been developed based on 

classification and regression trees (CART). The basic advantage 

of RF is in providing accurate predictions for high-dimensional 

input matrices without overfitting (Breiman, 2001; Domatskiy 

& Sivkova, 2022). RF starts with creating a tree through the 

random selection of a group of input variables to split on for 

each node. The best split is then computed based on training 

data. Second, the bagging procedure is used to resample the 

calibration data so that each time a new individual tree is 

grown (Breiman, 1996; Biau, 2012; Shiri et al., 2020b; 

Osadchuk et al., 2023). Different numbers of trees are normally 

evaluated to select the best RF method. Here, 150 trees (with 

eight cycles) were found to be optimal.  The minimum child 

node size and the maximum number of levels were chosen as 5 

and 10, respectively.  

Boosted regression tree (BT) 

BT incorporates a tree-based algorithm with boosting to 

enhance its regression-based machine learning strategy, which 

is an improvement over the traditional approach (Freidman et 

al., 2000; Mekeres et al., 2022). By fitting new trees to residual 

errors of existing trees, the boosting procedure enhances the 

model's accuracy. During each iteration, the existing tree 

remains unchanged and the optimal model is represented by a 

combination of linear trees (Elith et al., 2008). The number of 

trees is automatically optimized via an internal cross-

validation procedure. Control parameters, e.g. learning rate, 

tree complexity, and bag fraction were determined using a 

trial-and-error approach (França & Cabral 2015; Shiri et al., 

2020b; Al-Jaloud et al., 2022). Various numbers of seeds for the 

random number generator were evaluated, and the optimal 

outputs were obtained for seed number = 1.  

 

Study workflow description 

 

 
a) 

 
b) 

 
c) 

Figure 2. Partial autocorrelation function (PACF) of river flow 

records 

 

The recorded river flow values were used as model inputs in 

this study. Hence, the time series of the recorded flow values 

were analyzed based on the partial autocorrelation function 

(PACF) to select the best time lag for feeding the models. This 

is a common approach in literature for identifying the suitable 

input parameters when time series should be 

simulated/predicted (e.g. Karimi et al., 2016; Alexander et al., 

2018; Ahmed et al., 2022). PACF diagrams of river flow at each 

location have been shown in Figure 2, from which, it can be 

observed that the first four lags presented significant values in 

terms of correlation among various time steps of flow records.   

Based on this observation, the flow values of 4 days were used 

as input of the applied models in a step-by-step mode, so that 

each time one parameter was included in the input set. Table 2 

summarizes the adopted input set for the applied models.  

Table 2. The adopted input combinations 

Model Input variables 

Mars 1, RF1, BT1 Qt-1 

Mars 2, RF2, BT2 Qt-1, Qt-2 

Mars 3, RF3, BT3 Qt-1, Qt-2, Qt-3 

Mars 4, RF4, BT4 Qt-1, Qt-2, Qt-3, Qt-4 

After constructing the input matrix, the assessing method of 

the models should be defined. As mentioned, the k-fold test 

approach was used here, where one part of available records 

(here, one year) was reserved each time as test patterns, and 

the models were trained using the remaining data. The process 

is then repeated for all reserved parts till all the parts can be 

incorporated into both the model training and testing stages. 

Considering that there are 5 years of daily data at each 

location, 5 training-testing processes were performed at each 

location for each model and a total of 45 processes were 

performed in the study.   

 

Performance criteria 

The variance accounted for (VF), the dimensionless RMSE 

(scatter index, SI), and the Nash and Sutcliffe coefficient (NS) 

were used as statistical measures of models’ performance 

accuracy. 
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VAF = [1- 
Var(Q

io
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ie
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)
]×100 (2) 

SI = 
RMSE

Q
o

̅̅̅̅  (3) 

NS = 1 - 
∑ (Q

io
- Q

ie
)

2n
i=1 

∑ (Q
io

- Q
o

̅̅̅̅ )
2n

i=1

 (4) 

Where Qio and Qie define the recorded and predicted river flow, 

respectively. Qo
̅̅ ̅ is the mean observed river flow values of n 

available pattern. A good model should show higher VAF and 

NS values and a lower SI magnitude. These measures were 

computed for each test year as well as for all the available 

patterns (complete patterns of 5 years).  

RESULTS AND DISCUSSION 

Error statistics of the applied ML models for all studied 

stations are given in Table 3. Since the models were assessed 

by k-fold testing, two sets of statistics were computed, namely, 

global and individual. The individual indicators were computed 

for each test stage, while the global indicators were obtained 

by averaging the individual measures at each station. In this 

section, the global measures were analyzed first, and then a 

breakdown of indicators will be presented and discussed per 

test stage. The global indicators presented there showed that, 

in general, except for the first input combination, the rest of the 

combinations had similar performance accuracy in terms of the 

indicators in all stations. This shows although four-time lags 

have a significant correlation in time series (according to PAF), 

including more inputs beyond the second lag has negligible 

impact on modeling performance improvement (only VAF 

values differ) (Gupta et al., 2023). Comparing the applied 

models, the MARS presented lower SI and higher NS and VF 

values than the RF and BT in all locations and inputs, although 

differences are low in this case, too. So, based on the global 

indicators of each input combination, it might be stated that all 

three models have had similar performance, and the second 

input combination, relying on two days river flow values would 

be a suitable choice for the prediction task in the studied 

stations. A further global performance comparison was made 

between the adopted input combinations as can be seen in 

Table 4. The indicators presented in Table 4 have been 

obtained by averaging the global values of each indicator for all 

stations. Comparing the values in this table revealed that 

increasing the input variables beyond the second time lag has a 

negligible impact on modeling performance and the second 

input combination can be used as the optimum input set for 

the prediction task in this case. The reason for the selection of 

this combination is to use relatively fewer input variables for 

modeling, which reduces the model size and computational 

cost (Guzek et al., 2023).   

Analyzing the indicator's temporal variations at the studied 

locations (not presented here), revealed that obvious changes 

in the SI, NS, and VAF values occur per test stage when each 

time one part of data (here, one year) was used for testing the 

developed models. 

 

Table 3. Error statistics of the RF, MARS, and BT models in the studied stations 
   MARS RF BT 

Station 1 

Qt-1 

SI 0.17 0.26 0.17 

NS 0.98 0.97 0.97 

VAF 98.45 96.55 97.40 

Qt-1, Qt-2 

SI 0.13 0.24 0.22 

NS 0.99 0.97 0.97 

VAF 99.07 97.03 97.49 

Qt-1, Qt-2, Qt-3 

SI 0.13 0.25 0.22 

NS 0.99 0.97 0.97 

VAF 99.17 96.63 97.48 

Qt-1, Qt-2, Qt-3, Qt-4 

SI 0.12 0.23 0.22 

NS 0.99 0.97 0.97 

VAF 99.19 97.18 97.48 

Station 2 

Qt-1 

SI 0.18 0.26 0.23 

NS 0.99 0.97 0.98 

VAF 98.46 96.74 97.49 

Qt-1, Qt-2 

SI 0.13 0.26 0.23 

NS 0.99 0.97 0.98 

VAF 99.22 96.58 97.52 

Qt-1, Qt-2, Qt-3 

SI 0.12 0.29 0.22 

NS 0.99 0.96 0.98 

VAF 99.29 95.91 97.54 

Qt-1, Qt-2, Qt-3, Qt-4 

SI 0.12 0.28 0.22 

NS 0.99 0.96 0.98 

VAF 99.32 96.08 97.54 

Station 3 Qt-1 
SI 0.21 0.28 0.24 

NS 0.98 0.96 0.97 
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VAF 97.73 95.85 96.87 

Qt-1, Qt-2 

SI 0.16 0.29 0.24 

NS 0.99 0.96 0.97 

VAF 98.62 95.35 96.91 

Qt-1, Qt-2, Qt-3 

SI 0.16 0.32 0.24 

NS 0.99 0.95 0.97 

VAF 98.64 94.34 96.91 

Qt-1, Qt-2, Qt-3, Qt-4 

SI 0.16 0.32 0.24 

NS 0.99 0.95 0.97 

VAF 98.66 94.64 96.91 

 

 

Table 4. Global performance indicators of the input combinations  

Models 
MARS RF BT 

SI NS VAF SI NS VAF SI NS VAF 

Input configuration I 0.44 0.98 98.21 0.49 0.97 96.38 0.46 0.97 97.25 

Input configuration II 0.42 0.99 98.97 0.49 0.97 96.32 0.47 0.98 97.30 

Input configuration III 0.41 0.99 99.04 0.50 0.96 95.63 0.47 0.98 97.31 

Input configuration IV 0.41 0.99 99.06 0.49 0.96 95.97 0.47 0.98 97.31 

 

CONCLUSION 

Given the rising applications of machine learning (ML) 

techniques in various disciplines including hydrology and 

water resources management, prediction of river flow values 

has been considered as one of the important tasks in this 

context. So, a simulation study was performed in this research 

to investigate the capabilities of three ML techniques, namely, 

MARS, RF, and BT using data from three gauging stations at 

Des Moines River, Iowa, U.S.A. As this river is the largest river 

passing the Iowa state, accurate predictions of river flow time 

series are very important. These stations have been located 

upstream of the river. The applied models were constructed 

using four input combinations defined based on temporal 

correlations among the time series patterns. Total available 

patterns belonged to five years of daily records of river flow. 

The models were trained and tested based on adopting a 

temporal k-fold testing strategy. The obtained results showed 

that including two sets of river flow variables (records of two 

successive days) would be enough for accurate prediction of 

the river flow at all three locations. MARS, RF, and BT showed 

similar performance, although the error statistics fluctuated 

for different input combinations/stations, monotonously. 

Although the fundamentals of these three models are different, 

similar performance accuracy may belong, despite their higher 

capacity to map nonlinear complex systems, to the natural 

characteristics of river flow time series that made it easy to 

handle the prediction task based on chronologic information 

on data. 

ACKNOWLEDGMENTS: None 

CONFLICT OF INTEREST: None 

FINANCIAL SUPPORT: None 

ETHICS STATEMENT: None 

REFERENCES  

Ahmed, A. A. B., Alruwaili, M. N., Alanazi, J. F., Alanazi, D. F., & 

Alanazi, A. S. (2022). Awareness of diabetic patients 

regarding diabetes complications in Saudi Arabia: 

Systematic review. Pharmacophore, 13(5), 58-63. 

doi:10.51847/UQQWem7NOV 

Alexander, A. A., Thampi, A.  G., & Chithra, N. R. (2018). 

Development of hybrid wavelet-ANN model for hourly 

flood stage forecasting. Hydrology Research, 49(3), 658-

669. 

Al-Jaloud, M. M., Al-Osaidi, K. S., Al-Anzi, S. S., Al-Jalban, H. A., 

Al-Shahrani, F. M., Al-Omari, S. D., Al-Shahrani, A. S., Al-

Enezi, M. M., Almusjan, S. A., & Al-Faridi, S. A. (2022). 

Effect of various distraction techniques on pain and 

anxiety of pediatric dental patients: A systematic review. 

Pharmacophore, 13(5), 105-111.  
doi:10.51847/vTfTdjBaws 

Bakhshi Ostadkalayeh, F., Moradi, S., Asadi, A., Moghaddam Nia, 

A., & Taheri, S. (2023). Performance improvement of 

LSTM-based deep learning model for streamflow 

forecasting using Kalman filtering. Water Resources 

Management, 37, 3111-3127. 

Biau, G. (2012). Analysis of a random forests model. The 

Journal of Machine Learning Research, 13, 1063-1095. 

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 

123-140. 

Breiman, L. (2001). Random forests. Machine Learning, 45, 5-

32. 

Çora, H., & Çora, A. N. (2022). An international relations study: 

Turks in the Western world's history perspective and 

Ataturk's approach. Journal of Organizational Behavior 

Research, 7(1), 96-107. doi:10.51847/eegcptya4E 

Dalkiliç, H. Y., & Hashimi, S. A. (2020). Prediction of daily 

streamflow using artificial neural networks (ANNs), 

wavelet neural networks (WNNs), and adaptive neuro-

fuzzy inference system (ANFIS) models. Water 

Supply, 20(4), 1396-1408. 

https://doi.org/10.51847/UQQWem7NOV
https://doi.org/10.51847/vTfTdjBaws
https://doi.org/10.51847/vTfTdjBaws
https://doi.org/10.51847/eegcptya4E


Shiri et al.                                                                                                           World J Environ Biosci, 2023, 12, 4: 33-39 

 

38 
 

Domatskiy, V. N., & Sivkova, E. I. (2022). Opisthorchiasis - Is an 

urgent medical and social problem in Russia. Journal of 

Biochemical Technology, 13(4), 20-29.  
doi:10.51847/lXm5zetax6 

Edossa, D. C., & Babel, M. S. (2011). Application of ANN-based 

streamflow forecasting model for agricultural water 

management in the Awash River Basin, Ethiopia. Water 

Resources Management, 25, 1759-1773. 

Elgendy, T. Y. A. A. A. (2022). Proposed model for selection of 

the internal auditor using analytical network process: 

Case study. Journal of Organizational Behavior Research, 

7(1), 138-155. doi:10.51847/LNRB0ZkBTU 

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to 

boosted regression trees. Journal of Animal Ecology, 77(4), 

802-813.  

França, S., & Cabral, H. N. (2015). Predicting fish species 

richness in estuaries: Which modelling technique to 

use? Environmental Modelling & Software, 66, 17-26. 

 Freidman, J., Hastie, T., & Tibshirani, R. (2000). Additive 

logistic regression: A statistical view of boosting. Annals 

of Statistics, 28(2), 337-407.  

Friedman, J. H. (1991). Multivariate adaptive regression 

splines. The Annals of Statistics, 19(1), 1-67. 

Friedman, J. H., & Roosen, C. B. (1995). An introduction to 

multivariate adaptive regression splines. Statistical 

Methods in Medical Research, 4(3), 197-217. 

Gunduz, O., & Aral, M. M. (2005). River networks and 

groundwater flow: A simultaneous solution of a coupled 

system. Journal of Hydrology, 301(1-4), 216-234. 

Gupta, R. S., Roy, S., Bose, R., & Mandal, P. (2023). Impact of 

Ayush alternative medicine interventions in the COVID-

19 pandemic. Archives of Pharmacy Practice, 14(2), 37-43.  
doi:10.51847/QdA0hbAnDG 

Guzek, K., Stelmach, A., Rożnowska, A., Najbar, I., Cichocki, Ł., & 

Sadakierska-Chudy, A. (2023). A preliminary study of 

genetic polymorphisms potentially related to the adverse 

effects of aripiprazole. Archives of Pharmacy 

Practice, 14(2), 13-18. doi:10.51847/bNMXd353X2 

Han, D., Chan, L., & Zhu, N. (2007). Flood forecasting using 

support vector machines. Journal of 

Hydroinformatics, 9(4), 267-276. 

Insom, P., Cao, C., Boonsrimuang, P., Liu, D., Saokarn, A., 

Yomwan, P., & Xu, Y. (2015). A support vector machine-

based particle filter method for improved flooding 

classification. IEEE Geoscience and Remote Sensing 

Letters, 12(9), 1943-1947. 

Jayavel, K., & Sivagnanam, S. (2022). The current scenario 

regarding the narrative advancement of oral cancer. 

Clinical Cancer Investigation Journal, 11(2), 7-13.  
doi:10.51847/fEhFVfwAsL 

Karimi, S., Shiri, J., Kisi, O., & Shiri, A. A. (2016). Short-term and 

long-term streamflow prediction by using wavelet–gene 

expression programming approach. ISH Journal of 

Hydraulic Engineering, 22(2), 148-162. 

Karimi, S., Shiri, J., Kisi, O., & Xu, T. (2017). Forecasting daily 

streamflow values: Assessing heuristic models. Hydrology 

Research, 49(3), 658-669. 

Kaur, H., Mishra, D., Roychoudhury, A., Sharma, M. C., Bhalla, A. 

S., Mridha, A. R., Kakkar, A., Yadav, R., Kala, S., & Mishra, S. 

(2023). Giant cells lesions of oral and maxillofacial region 

– A proposed diagnostic algorithm. Clinical Cancer 

Investigation Journal, 12(1), 17-26.  
doi:10.51847/jT6kJbFKDg 

Kisi, O., & Parmar, K. S. (2016). Application of least square 

support vector machine and multivariate adaptive 

regression spline models in long term prediction of river 

water pollution. Journal of Hydrology, 534, 104-112. 

Kisi, O., Dailr, A. H., Cimen, M., & Shiri, J. (2012). Suspended 

sediment modeling using genetic programming and soft 

computing techniques. Journal of Hydrology, 450, 48-58. 

Kisi, O., Parmar, K. S., Soni, K., & Demir, V. (2017). Modeling of 

air pollutants using least square support vector 

regression, multivariate adaptive regression spline, and 

M5 model tree models. Air Quality, Atmosphere & 

Health, 10, 873-883. 

Kryuchkova, A. V., Tunguzbieva, R. U., Tokaeva, K. S., Isaev, A. 

A., Elmaeva, L. R., & Mikhailenko, V. V. (2022). Collagen 

hydrolysates in the prevention and treatment of arthritis. 

Journal of Biochemical Technology, 13(4), 54-59.  
doi:10.51847/3SWKk0nMnP 

Latt, Z. Z., & Wittenberg, H. (2014). Improving flood forecasting 

in a developing country: A comparative study of stepwise 

multiple linear regression and artificial neural 

network. Water Resources Management, 28, 2109-2128. 

 Macharyulu, I. S., Satapathy, D. P., Sahoo, A., Samantaray, S., 

Mohanta, N. R., & Ray, A. (2022). Performance evaluation 

of MLP and cnn models for flood prediction. In Intelligent 

System Design: Proceedings of INDIA 2022 (pp. 273-281). 

Singapore: Springer Nature Singapore. 

Maroufpoor, S., Jalali, M., Nikmehr, S., Shiri, N., Shiri, J., & 

Maroufpoor, E. (2020). Modeling groundwater quality by 

using hybrid intelligent and geostatistical 

methods. Environmental Science and Pollution 

Research, 27(2), 28183-28197. 

Mashhour, K., Saad, E., Abdelghany, H., & Hashem, W. (2023). 

3D-CRT versus SIB IMRT acute toxicity outcomes in 

preoperative concurrent chemo-radiotherapy for locally 

advanced rectal cancer. Clinical Cancer Investigation 

Journal, 12(1), 36-42. doi:10.51847/uBAn5N4CCd 

Mekeres, G. M., Buhaș, C. L., Bulzan, M., Marian, P., & Hozan, C. 

T. (2022). Objective criteria in evaluating the 

consequences of the posttraumatic scars. Pharmacophore, 

13(1), 56-61.  doi:10.51847/nSmkjXUdzR 

Osadchuk, M. A., Osadchuk, A. M., Vasilieva, I. N., & Trushin, M. 

V. (2023). The state biology museum named after kliment 

arkadyevich timiryazev as a scientific and educational 

center. Journal of Biochemical Technology, 14(1), 7-12.  
doi:10.51847/OLKERwxo55 

Shiri, J., Kisi, O., Yoon, H., Kazemi, M. H., Shiri, N., Poorrajabali, 

M., & Karimi, S. (2020b). Prediction of groundwater level 

variations in coastal aquifers with tide and rainfall effects 

using heuristic data driven models. ISH Journal of 

Hydraulic Engineering, 28(sup1), 188-198. 

Shiri, N., Shiri, J., Kazemi, M. H., & Xu, T. (2022). Estimation of 

CO2 flux components over northern hemisphere forest 

ecosystems by using random forest method through 

temporal and spatial data scanning 

procedures. Environmental Science and Pollution 

Research, 29(11), 16123–16137.  

Shiri, N., Shiri, J., Nourani, V., & Karimi, S. (2020a). Coupling 

wavelet transform with multivariate adaptive regression 

spline for simulating suspended sediment load: 

https://doi.org/10.51847/lXm5zetax6
https://doi.org/10.51847/lXm5zetax6
https://doi.org/10.51847/LNRB0ZkBTU
https://doi.org/10.51847/QdA0hbAnDG
https://doi.org/10.51847/QdA0hbAnDG
https://doi.org/10.51847/bNMXd353X2
https://doi.org/10.51847/fEhFVfwAsL
https://doi.org/10.51847/fEhFVfwAsL
https://doi.org/10.51847/jT6kJbFKDg
https://doi.org/10.51847/jT6kJbFKDg
https://doi.org/10.51847/3SWKk0nMnP
https://doi.org/10.51847/3SWKk0nMnP
https://doi.org/10.51847/uBAn5N4CCd
https://doi.org/10.51847/nSmkjXUdzR
https://doi.org/10.51847/OLKERwxo55
https://doi.org/10.51847/OLKERwxo55


Shiri et al.                                                                                                           World J Environ Biosci, 2023, 12, 4: 33-39 

 

39 
 

Independent testing approach. ISH Journal of Hydraulic 

Engineering, 28(sup1), 356-365.  

Shiri, N., Shiri, J., Yaseen, Z. M., Kim, S., Chung, I. M., Nourani, V., 

& Zounemat-Kermani, M. (2020). Development of 

artificial intelligence models for well groundwater quality 

simulation: Different modeling scenarios. Plos one, 16(5), 

e0251510.  

Tennant, D. L. (1976). Instream flow regimens for fish, wildlife, 

recreation and related environmental 

resources. Fisheries, 1(4), 6-10. 

Terela, H., & Strilets, V. (2023). Supervision and control over 

compliance with labor law in Ukraine during the martial 

law. Journal of Organizational Behavior Research, 8(1), 39-

51. doi:10.51847/mEsB03yCM9 

Wegayehu, E. B., & Muluneh, F. B. (2022). Short-term daily 

univariate streamflow forecasting using deep learning 

models. Advances in Meteorology, 2022. 

doi:10.1155/2022/1860460 

Yilmaz, M., Tosunoğlu, F., Kaplan, N. H., Üneş, F., & Hanay, Y. S. 

(2022). Predicting monthly streamflow using artificial 

neural networks and wavelet neural networks 

models. Modeling Earth Systems and Environment, 8(4), 

5547-5563. 

 

 

 

https://doi.org/10.51847/mEsB03yCM9

