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ABSTRACT 
 

Plant-derived materials are increasingly recognized for their nutritional and medicinal benefits. Rutin (RN), a bioflavonoid with phenolic 
antioxidant properties, is known for scavenging superoxide radicals and enhancing blood vessel permeability. Despite these benefits, rutin's 
oral bioavailability is low due to poor absorption. To improve rutin's antioxidant qualities and bioavailability, this study sought to create a 
stable nanophytosomal formulation filled with rutin. The thin-layer hydration approach was used to create rutin-loaded nanophytosomes 
utilizing phosphatidylcholine (PC) and cholesterol (CH). Using differential scanning calorimetry (DSC), zeta potential, scanning electron 
microscopy, IR spectroscopy, and particle size analysis, the physicochemical characteristics of the nanophytosomes were evaluated. For three 
weeks during storage, the nanophytosomes' stability was assessed. As per the findings, the lowest particle size was obtained with an RN: PC: 
CH molar ratio of 1:2:0.5 (F3), and the physical stability of the nanophytosomes was considerably enhanced by the addition of cholesterol. 
Analytical techniques confirmed the formation of Rutin-Nanophytosomes. The formulation of Rutin nanophytosomes markedly improved the 
antioxidant activity of Rutin by increasing its bioavailability and stability. 
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INTRODUCTION 
 

Rutin, also chemically known as 3, 3´, 4´, 5, 7-

pentahydroflavone-3-rhamnoglucoside, is a well-known 

flavonoid that is present in a wide range of plants, including the 

Marantaceae family member Ruta graveolens. It has a variety of 

pharmacological properties, including anti-inflammatory, 

antithrombotic, antioxidant, and antineoplastic actions (Amjadi 

et al., 2021; Mahmood et al., 2023; Omidfar et al., 2023). 

Additionally, rutin is effective in mitigating ultraviolet 

radiation-induced oxidative stress and inflammation, treating 

capillary fragility, reducing hypertension, and lowering both 

hepatic and blood cholesterol levels. Its anti-platelet properties 

further enhance its therapeutic profile (Alharbi et al., 2021; 

Shriram et al., 2022; Moghaddam et al., 2023; Dehnad et al., 

2024). 

Typically made from soy, phospholipids, and naturally occurring 

water-soluble phytoconstituents combine to form phytosomes, 

which are sophisticated delivery mechanisms. Lipid-compatible 

molecular complexes that considerably improve absorption and 

bioavailability are produced when certain concentrations of 

phospholipids combine with phytoconstituents in a solvent 

(Alharbi et al., 2021; Shriram et al., 2022; Ibrahim et al., 2023; 

Pozos-Nonato et al., 2023; Dehnad et al., 2024). Unlike 

conventional herbal extracts, phytosomes offer superior 

bioavailability due to their enhanced absorption and systemic 

circulation reach. This makes phytosomes particularly 

advantageous for the delivery of herbal medicines, 

nutraceuticals, and topical skin care products (Alharbi et al., 

2021; Barani et al., 2021; Susilawati et al., 2021; Kumar et al., 

2023). 

Rutin, also known as quercetin-3-rutinoside or sophorin, is a 

flavanol glycoside consisting of the flavanol quercetin and the 

disaccharide rutinose. It is extracted from sources like the 

Japanese pagoda tree, buckwheat seed, and citrus fruits such as 

oranges, grapefruits, and lemons (Kamboj, 2018; Lu et al., 2019; 

Islam et al., 2022; Rathee & Shriram et al., 2022; Tiwari et al., 

2023). One innovative drug delivery system for transdermal 

application is the nanophytosome, a vesicular complex formed 

between phytoconstituents and phospholipids, resembling cell 

membranes with polar heads and nonpolar tails. 

Phytoconstituents bind to the polar head of phospholipids, 

typically phosphatidylcholine, to form a stable complex that 

improves absorption and bioavailability (Zhang et al., 2013; 
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Sabzichi et al., 2014; Telange et al., 2017; Alhakamy et al., 2020; 

Bhargav et al., 2021; Jain et al., 2021; Gaikwad et al., 2023). 

Phytosomes are distinct from liposomes in their structural 

formation; while liposomes encapsulate the active ingredient 

within their cavity or membrane layers, phytosomes integrate 

the active ingredient into the membrane itself, anchoring it 

through chemical bonds to the phospholipid's polar head. This 

structural difference grants phytosomes superior physical 

stability, enhancing the absorption and bioavailability of 

hydrophilic polar phytoconstituents and leading to greater 

therapeutic benefits (Huang et al., 2020; Nandhini & Ilango, 

2020; Alharbi et al., 2021). 

Rutin's pharmacological activities extend beyond its antioxidant 

properties, including anti-inflammatory, neuroprotective, 

cardioprotective, anti-arthritic, anti-psoriasis, antimicrobial, 

antiallergic, antiviral, hepatoprotective, anticancer, and 

gastroprotective effects. Its notable antioxidative and radical-

scavenging abilities make it effective against hydroxyl, 

superoxide, and peroxyl radicals (Riva et al., 2019; Shriram et 

al., 2022). Foods originating from plants and animals both 

include phospholipids, which are essential parts of all cell 

membranes. An excellent source of choline for dietary 

supplements is soy lecithin, a natural phospholipid combination 

(Naik et al., 2006; Gnananath et al., 2017; H Shariare et al., 

2020). 

The objective of this research is to create and assess rutin-

loaded phytosomes as a possible topical treatment for 

inflammatory disorders, with the goal of long-term therapeutic 

advantages.  

MATERIALS AND METHODS 

Rutin (RN) was procured from Loba Chemie, Mumbai, India. 

Phosphatidylcholine (PC) was acquired from Labogen, Gujarat, 

India, while cholesterol (CH) was sourced from Labogen, 

Punjab, India. All additional chemicals and solvents required for 

the research were obtained from Himedia Laboratories 

Research Lab, Mumbai, India. 

Preparation of rutin nanophytosomes (RN-NPs) 

RN and PC were diluted in different molar ratios (1:1, 1:2, and 

1:4) to create phytosomes by the thin layer hydration technique. 

Dichloromethane was used to dissolve cholesterol, but ethanol 

was used to dissolve RN and PC. A rotary evaporator (Heidolph, 

Germany) was used to evaporate the solvents from the mixture 

and create a thin, dry layer. The mixture was put in a flask with 

a circular bottom. The film was exposed to nitrogen gas flow and 

allowed to sit at room temperature for the whole night before 

being hydrated to guarantee the total elimination of organic 

solvents. Next, using a rotary evaporator set at 45 °C, the film 

was hydrated with distilled water. Three techniques—bath 

sonication (Model 8852, Cole-Parmer Instrument, Chicago, IL) 

at 45 °C, homogenization (Heidolph, Germany) at 20,000 rpm, 

and probe sonication (Sonix, Vibracell)—were used to decrease 

the size of the phytosomes (Nagpal et al., 2016; Matias et al., 

2017; Deleanu et al., 2023). The graphical approach of rutin-

nanophytosome production is shown in Figure 1.

 

 
Figure 1. Schematic Illustration of the Preparation Method of Rutin Nanophytosomes (RN-NPs). 

 

Characterization of nanophytosomes 

IR spectroscopy: Using an FT-IR spectrometer (Brucker Alpha2, 

Germany), FT-IR spectra were captured. Potassium bromide 

was added to physical mixes, rutin pure, cholesterol, 

phosphatidylcholine, and lyophilized nanophytosomal 

formulations. The particles were compacted in a hydraulic press 

for 10 minutes at 15 tons of pressure (Direito et al., 2019). 

Between 4000 and 400 cm⁻¹, scans were conducted at a 

resolution of 2 cm⁻¹. 
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Differential scanning calorimetry 

Samples containing phospholipids and phytosomes were placed 

in aluminum crimp cells and heated at a rate of 100 °C/min from 

0 to 4000 °C under a nitrogen atmosphere using a Perkin Elmer 

4000 (Germany). The onset temperatures of peak transitions 

were recorded with an analyzer. 

Particle size 

The particle size was measured using photon correlation 

spectroscopy (Horiba SZ-100, Japan) through the dynamic light 

scattering method (Abdelkader et al., 2016; El-Menshawe et al., 

2018; Permana et al., 2020). Samples were diluted in distilled 

water and sonicated for 5 minutes. The analysis was performed 

three times, and the average hydrodynamic particle size was 

reported as the z-average size ± SD. 

Zeta potential 

A Malvern Zetasizer (Horiba SZ-100) was used to estimate the 

surface charge of rutin nanophytosomes. Experiments were 

conducted at 25 °C and 149 watts after samples were diluted 50 

times with distilled water. Three measurements were used to 

determine the average zeta potential of the nanophytosomes. 

Encapsulation efficiency 

Using the following formula, the rutin encapsulation efficiency 

in nanophytosomes was determined.  

 

EE % = Total drug added – free non-entrapped drug / 

total drug added 
(1) 

 

W [added drug] is the amount of free drug found in the lower 

chamber of an Amicon Ultra-15 tube (Merck Millipore Ltd., 

Ireland) with a 100 kDa molecular weight cutoff following 

centrifugation. W [added drug] is the amount of added drug 

used in the creation of nanophytosomes. One milliliter of the 

sample was diluted with one milliliter of ethanol to dissolve any 

unentrapped rutin to separate the drug from the nanoparticles. 

The nanophytosomes remained in the upper chamber after the 

mixture was centrifuged at 5000 rpm for 10 minutes in a Hettich 

EBA 20 centrifugal filter in Germany. The fact that the 

nanophytosomes retained their stability in a 50:50 

hydroethanolic solution is noteworthy. With the use of a 

Shimadzu 8400 S (Japan) spectrophotometer, the amount of 

unentrapped Rutin in the lower chamber was measured. 

Scanning electron microscopy [SEM] 

About 5 μl of the phytosome suspension was placed onto a 

coverslip and mounted on a specimen stub. The samples were 

then allowed to dry, and the particle size of the formulation was 

examined using scanning electron microscopy (SEM) with a 

Hitachi 4000plus (Japan). 

Transmission electron microscopy [TEM] 

Before testing, the newly made nanoparticle solution was 

diluted 1:5 in ethanol and sonicated for five minutes. Samples 

were seen in transmission electron microscopy (TEM; JEM-

2000 EX; JEOL, Japan) at magnifications ranging from 50 to 200 

nm after being arranged on a copper grid covered with carbon. 

The form and surface morphology of the particles were 

ascertained using TEM. Particle size was determined by 

measuring the diameter of individual nanoparticles in images 

that were taken using a digital camera. 

Anti-oxidant activity 

The assay measures antioxidants by their reaction with stable 

free picrylhydrazyl (DPPH) (Sikarwar et al., 2008; Kim et al., 

2019; Rondanelli et al., 2022). The method involves mixing the 

sample with DPPH in methanol/water, which helps extract 

antioxidant compounds. 1.0 mL of the 0.4 mM DPPH solution 

and 1.0 mL of each test solution concentration series were 

combined for the test. After a certain amount of time, the 

mixtures were vortexed for thirty seconds. After that, 

absorbance at 516 nm was measured. Pure rutin and rutin 

nanophytosome samples were both subjected to absorbance 

tests. 

RESULTS AND DISCUSSION 

IR spectroscopy 

Spectroscopic sleuthing was employed to uncover the intricate 

dance between phosphatidylcholine (PC) and Rutin. Using FTIR 

spectroscopy, the unique functional groups and their 

frequencies were revealed, showcasing the key chemical 

components of Rutin and PC, and highlighting the emergence of 

novel interactions between them during the nanophytosome 

creation. The FTIR spectra of pure Rutin, PC, and cholesterol are 

shown in Figure 2, along with physical mixes and the resultant 

Rutin, PC, and cholesterol nanophytosomes. 

 

 
Figure 2. IR Spectrum of (A) Rutin, (B) Cholesterol, (C) Phosphatidylcholine, (D) Physical Mixture, (E) RN-NPS. 
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Differential scanning calorimetry [DSC] 

DSC thermograms were inspected to confirm that a complex had 

formed between phospholipid and rutin (Martins-Gomes et al., 

2022). Figure 3 shows the rutin-loaded nanophytosomes, their 

physical mixing, and the DSC thermograms of pure rutin, 

cholesterol, and phosphatidylcholine (PC).  

Cholesterol's DSC thermogram exhibited endothermic peaks at 

150°C, likely indicating the melting of its non-polar hydrocarbon 

tail. This phase transition produced a sharp peak. The physical 

mixture's DSC thermogram showed a similar peak for 

cholesterol at around 149 °C. However, there were no 

endothermic peaks for PC or Rutin. Both compounds' crystalline 

states changed when PC and rutin were combined.  

The melting point of pure rutin, or 192 °C, was shown as an 

endothermic peak on the DSC thermogram. Remarkably, the 

thermogram of the nanophytosomes loaded with rutin showed 

that this peak had vanished, indicating that rutin was 

completely incorporated into the matrix of the nanophytosome, 

which had distinct thermal characteristics from the physical 

mixture. The polar portion of phosphatidylcholine and the -OH 

group of rutin most likely formed a hydrogen bond, which is 

responsible for this embedding, as Figure 3 shows.

 

 

Figure 3. DSC Spectra of (A) Rutin, (B) Cholesterol, (C) Phosphatidylcholine, (D) Physical Mixture, (E) RN-NPS. 

Zeta potential 

Zeta potential, the electric potential at a particle's surface, is a 

crucial indicator of colloidal system stability (Palachai et al., 

2020; Hajizadeh Moghaddam et al., 2021; Costa et al., 2022). 

Colloids with high absolute Zeta potential values (typically 

above 30 mV), whether positive or negative, are considered 

electrically stable. Conversely, those with low Zeta potential 

values are prone to coagulation or flocculation, indicating 

instability. Generally, higher Zeta potential values correlate with 

greater and more enduring particle stability. 

Various factors, such as pH, ionic strength, and the type and 

concentration of biopolymers used, can influence a particle's 

Zeta potential. The surface charge analysis results, depicted in 

Figure 4, indicate a Zeta potential of 3.3 mV for Rutin 

phytosomes, pointing to their high physical stability.  

 

 
Figure 4. Zeta potential of Rutin Nanophytosomes. 

 

Particle size and encapsulation efficiency: Table 1 details the 

encapsulation effectiveness, polydispersity index (PDI) value, 

mean particle size, antioxidant activity, and composition of 

Rutin nanophytosomes made with varying molar ratios of Rutin 

(RN), phosphatidylcholine (PC), and cholesterol (CH). Three 

experiments' mean ± standard deviation are displayed as the 

data.
 

Table 1. Composition, Mean Particle Size, PDI Value, Encapsulation Efficiency, and Antioxidant Activity of Rutin Nanophytosomes. 

Formulations RN:PC:CH Particle size Encapsulation efficiency [%] PDI IC50 

F1 1:2:0.1 373.31 ± 1.51 96.00 ± 1.00 0.394 20.34 

F2 1:2:0.3 177.57 ± 1.54 96.65 ± 0.57 0.456. 30.45 

F3 1:2:0.5 112.32 ± 2.87 95.64 ± 0.57 0.463 21.63 

F4 1:2:0.7 201.65 ± 6.49 95.64 ± 1.13 0.489 28.67 

F5 1:2:0.9 391.64 ± 2.87 96.30 ± 0.57 0.762 29.89 
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Scanning electron microscopy 

Scanning Electron Microscopy (SEM) offers valuable insights 

into the solid-state characteristics and surface morphology of 

drugs and their complexes. The SEM analysis confirms the 

vesicle size, as measured by the size analyzer, to be 477 nm. The 

drug particles are observed to be associated with the 

phospholipids, forming spherical, uniform, and rigid vesicles. 

Figure 5 displays the SEM image of Rutin, illustrating these 

observations. 

 

 
Figure 5. SEM of Rutin nanophytosomes. 

 

TEM 

The Rutin nanophytosome sample utilized for the TEM analysis 

corresponds to the Rutin formula 2 nanophytosome, which has 

a composition of Rutin, Phosphatidylcholine, and Cholesterol in 

a ratio of 1:2:0.3. This specific formulation, incorporating 1 mole 

of phosphatidylcholine, helps to prevent particle agglomeration, 

ensuring that the particles remain small. TEM observations of 

the Rutin formula 2 nanophytosome reveal spherical 

nanoparticles. The TEM micrograph, depicted in Figure 6, 

shows that the polar regions of the vesicles appear black, 

whereas the non-polar regions are indicated by transparent or 

colorless areas. 

 

 
Figure 6. TEM of Rutin Nanophytosomes. 

 

Anti-oxidant activity 

The IC50 values in Table 1 indicate the antioxidant capability of 

Rutin nanophytosomes in each formula, which ranges from 20 

to 32 μg/ml. In particular, rutin nanophytosomes made with 

RN:PC:CH molar ratios of 1:2:0.5 (F3) showed IC50 values of 

21.63 μg/ml. The IC50 value of pure rutin powder is 25.28 

μg/ml, which is higher than these values. This finding 

demonstrates that rutin nanophytosomes are more effective in 

scavenging free radicals than coarse rutin powder. As opposed 

to micronized products, a substantial improvement in free 

radical scavenging is obtained when particle size is reduced to 

the nano range, which improves surface area and concentration 

gradient (Omidfar et al., 2023). So, by creating its 

nanophytosomes, rutin's antioxidant activity is enhanced. 

Rutin's antioxidant capacity was found to be efficient even after 

being encapsulated in the formulation of the nanophytosome. 

The enhancement of antioxidant activity in Rutin 

nanophytosomes can be attributed to several key factors. 

Firstly, the encapsulation of Rutin in nanophytosomes 

significantly increases its solubility and bioavailability. Rutin, 

being lipophilic, typically exhibits poor solubility in aqueous 

environments, limiting its effectiveness. However, when 

encapsulated in nanophytosomes, the phospholipid bilayer 

facilitates better dispersion and interaction with biological 

membranes, enhancing absorption and cellular uptake. 

Additionally, the small particle size of the nanophytosomes 

ensures a larger surface area for interaction with free radicals, 

leading to more efficient scavenging activity. This increased 

surface area also allows for a more uniform distribution of Rutin 

in biological systems, promoting consistent antioxidant activity 

throughout. 

Moreover, the encapsulation process protects Rutin from 

degradation and oxidation, preserving its antioxidant 

properties over time. The stability provided by the 

nanophytosome structure ensures that Rutin remains active 

and effective until it reaches its target site within the body. 

The high encapsulation efficiency of Rutin in the 

nanophytosomes, confirmed by FTIR and DSC analyses, further 

supports the enhanced antioxidant activity. The formation of a 

stable Rutin-Phospholipid complex ensures that a substantial 

amount of Rutin is delivered effectively, maximizing its 

therapeutic potential. 

Overall, the improved solubility, increased surface area, 

enhanced stability, and efficient delivery provided by the 

nanophytosome formulation collectively contribute to the 

significantly enhanced antioxidant activity of Rutin, making it a 

promising approach for various therapeutic applications. 

CONCLUSION 

Because rutin has so many health advantages, industrial food 

science is interested in incorporating rutin into food items. 

Rutin's lipophilic properties, however, restrict its use in the 

treatment of diseases including cancer, COVID-19, bacterial 

infections, and viral infections. Our research on preparing 

nanostructures loaded with high amounts of Rutin (using a 

rutin-to-phosphatidylcholine ratio of 1:2) advances the 

understanding of incorporating lipophilic herbal supplements 

into food and beverages. The low particle size, excellent 

encapsulation effectiveness, and stability of the rutin-loaded 

nanophytosomes were observed upon physicochemical 

evaluation. Rutin was successfully loaded into the phytosomes, 

as shown by the FTIR and DSC tests that verified the 

development of a rutin-phospholipid complex in the 

nanophytosomes. In conclusion, the development of Rutin 

nanophytosomes significantly enhanced the antioxidant activity 
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of Rutin, demonstrating improved bioavailability and stability 

compared to its conventional form. 
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